首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Returning farmland to forests is important for the protection of ecological values. Eucommia ulmoides is considered to be a suitable species for reforestation in the hilly red soil region of southern China. The objective of this study was to investigate the relationship between the water supply and demand of an E. ulmoides plantation to provide insights into the feasibility of large-scale planting for ecological restoration and forest management activities in the hilly red soil region of southern China. With the measured precipitation, surface runoff and interflow and actual evapotranspiration (ETc) estimated by the modified P–M model, soil water storage (SWS) was estimated based on the water balance equation. Monthly variations of SWS were then compared with in situ measured SWS. The results showed that the estimated mean monthly water losses (the sum of the surface runoff, interflow and ETc) were 139.8 mm in a wet year and 120.0 mm in a dry year, while the measured mean monthly water input values (net precipitation) were 131.2 mm in a wet year and 70.8 mm in a dry year. Net soil water storage (ΔSWS) was negative in each month of the growing season in a dry year, but the soil water deficit was replenished during the following season. The model performance showed that the modified P–M model can be adapted to estimate the soil water storage in other forest catchments where no adequate in situ data are available. As a result of estimating the water balance and observing soil water storage in two different hydrological years, E. ulmoides is recommended as a suitable forest rehabilitation species in the study area, and a suitable plant region has been defined by the GIS technique based on the water balance model.  相似文献   

2.
This study employs an ex-ante analytical approach to explore the financial viability of cocoa agroforestry systems in Ghana using cross-sectional data on smallholder cocoa farmers in the Western Region of Ghana. The empirical results generally show that cocoa agroforestry systems are profitable, but the medium shade tends to be more profitable. The no-shade cocoa agroforestry has the highest yield compared with other cocoa agroforestry systems. Sensitivity analysis revealed that increasing the market price by 12.2 % tends to increase the profitability of cocoa agroforestry systems. Also increasing fertilizer price does not lead to any significant change in the profitability. The study recommends the medium-shade cocoa agroforestry system as the most profitable agroforestry system for optimizing ecological and economic outcomes of smallholder cocoa farmers in sub-Saharan Africa.  相似文献   

3.
River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).  相似文献   

4.
The Central Indian Highland landscape (CIHL) represents a complex, diverse, and highly human-modified system. Nearly half the landscape is cropland, yet it hosts 21 protected areas surrounded and connected by forests. Changing farming practices with increasing access to irrigation might alter this intensifying landscape in the near future particularly in light of weather variability. We analyzed a decade of remote sensing data for cropping patterns and climatic factors combined with census data for irrigation and demographic factors to understand winter cropping trajectories in the CIHL. We quantified ‘productive cropped area’ (PCA), defined as the area with planted crop that is green at the peak of the winter growing season. We find three primary trajectories in PCA—increasing, fluctuating, and decreasing. The most dominant trend is fluctuating PCA in two-thirds of the districts, ranging from ~2.11 million to ~3.73 million ha between 2001 and 2013, which is associated with village-level access to irrigation and local labor dynamics. In 58 % of all districts, clay soils were associated with winter cropping (p < 0.05). Increasing irrigation is associated with increased winter PCA in most (94 %) districts (p < 0.00001). We find strong negative association between PCA and land surface temperature (LST) in most (66 %) districts (p < 0.01). LST closely corresponds to daytime mean air temperature (p < 0.001) for available meteorological stations. Fine-scale meteorological and socioeconomic data, however, are needed to further disentangle impacts of these factors on PCA in this landscape.  相似文献   

5.
Although the coastal salt marshes of Arabian Gulf have been altered extensively by human development activities, there is a paucity of data describing changes in the distribution and abundance of native coastal plant communities. The main objectives of this study are to determine vegetation condition, size structure, and conservation status of Nitraria retusa, a medicinal and salt-tolerant shrub, in disturbed and non-disturbed coastal salt marshes of Kuwait. Size measurements of Nitraria shrubs and nabkas, which are mounds of sediment developed around shrubs, were carried out in 50 quadrats (20 × 20 m2), randomly selected inside and outside Sabah Al-Ahmad Natural Reserve. Species richness and soil properties of nabkas and interspaces, the open areas between the nabkas, were also measured. The results revealed that nabkas of Nitraria in non-disturbed sites are more stable and rich in plant diversity than those in disturbed sites. Mean height and mean canopy diameter of Nitraria shrubs, total plant cover, and species richness are significantly higher in non-disturbed sites than disturbed sites, which indicate the positive influences of conservation for long term on vegetation structure and species richness. The results of soil analyses indicate the important role of nabkas in providing refuges for plant life and species diversity. The present study indicates that more than 50 % of the N. retusa community has been lost during the last few decades. Therefore, N. retusa should be considered an endangered species in Kuwait. The reduction in vegetation cover, a decline in species richness, and the overall degradation of salt marshes are attributed to human development activities along the coast of Kuwait. Effective conservation actions for threatened species in degraded coastal salt marshes of this region include establishment of protective enclosures, prohibitions on development that adversely affects native plant communities, and the planting native salt-tolerant shrubs to facilitate regeneration.  相似文献   

6.
Monitoring and detecting trends of climatic variables like rainfall and temperature are essential for agricultural developments in the context of climate change. The present study has detected trends in annual and cropping seasonal rainfall and temperature data for the period of 1961–2011 using Mann–Kendall (MK) test, Spearman’s rho (SR) test and modified Mann–Kendall test that has been applied to the significant lag-1 serial correlated time series data, and slope has been estimated using Sen’s Slope estimator for twelve meteorological stations located in the western part of Bangladesh covering about 41 % of the country. Almost 71 % trends explored by MK test in annual rainfall are statistically insignificant, and SR test also complies it. The spatial distribution of rainfall trend shows insignificant positive trends in major part of the area. Significant positive trends both by MK test and by SR test at 95 % confidence levels are observed at rates of 8.56, 11.15 and 13.66 mm/year at Dinajpur, Rangpur and Khepupara stations, respectively, and the Kharif season rainfall of these stations also shows significant increasing trends except Dinajpur. On the other hand, significant decreasing trends in annual rainfall are found at Bhola (?11.67 mm/year) and Rajshahi (?5.951 mm/year) stations and decreasing trends in rainfall dominated the Pre-Kharif season over the area. But, 83.33 % of the stations show rising trends in annual mean temperature with significant positive trends (as observed by both MK test and SR test) at Rangpur, Bogra, Faridpur, Jessore and Bhola stations where the rate of changes vary from 0.013 °C/year at Faridpur to 0.08 °C/year at Bhola. Most of the trends in Rabi and Pre-Kharif seasons of mean temperatures are not statistically significant. However, all stations except Barisal show significant rising trends in temperature in Kharif season. To cope with this changing pattern of rainfall and temperature, effective adaptation strategies should be taken to keep up the agricultural production that is related to livelihood of the most people and to ensure the country’s food security.  相似文献   

7.
Rise in temperature and annual precipitation, changes in seasonal rainfall patterns, more frequent and severe extreme weather events, and increased salinity in river water have been observed in Bangladesh in the recent years. Rising temperature will elevate total power consumption and peak power demand especially during the pre-monsoon hot summer season, reduce power plant efficiency and transformer lifetime, and increase the transmission loss. More frequent and severe extreme weather events may cause more disruption in power generation and distribution, and more damage of power infrastructure. Lower river flow in dry season may cause water scarcity in power plants and hamper the production. Increased salinity in river water due to sea level rise may lead to corrosion and leakages in power plants located in the coastal region of Bangladesh. A diversified, decentralized, and climate resilient power system can reduce negative impacts of climate change on power sector of Bangladesh. Adaptation and mitigation strategies must be incorporated in the planning and development of new power systems and the reformation of existing power systems of Bangladesh.  相似文献   

8.
This study takes an historical approach in order to establish how the form and function of the social-ecological system that represents the Bangladesh south-western coastal zone has changed over recent decades. Time series data for a range of ecosystem services and drivers are analysed to define the range of trends, the presence of change points, slow and fast variables and the significant drivers of change. Since the 1980s, increasing gross domestic product and per capita income mirror rising levels of food and inland fish production. As a result, the size of population below the poverty line has reduced by ~17 %. In contrast, non-food ecosystem services such as water availability, water quality and land stability have deteriorated. Conversion of rice fields to shrimp farms is almost certainly a factor in increasing soil and surface water salinity. Most of the services experienced statistically significant change points between 1975 and 1980, and among the services, water availability, shrimp farming and maintenance of biodiversity appear to have passed tipping points. An environmental Kuznets curve analysis suggests that the point at which growing economic wealth feeds back into effective environmental protection has not yet been reached for water resources. Trends in indicators of ecosystem services and human well-being point to widespread non-stationary dynamics governed by slowly changing variables with an increased likelihood of systemic threshold changes/tipping points in the near future. The results will feed into simulation models and strategies that can define alternative and sustainable paths for land management.  相似文献   

9.
In 2010, the global burden of foodborne diseases was 33 million Disability-adjusted life years, and 40 % of this burden was for children under 5 years old (Havelaar et al. 2015). Our study site was informal public markets within Mzuzu, Malawi, visited between September and December 2015, during the dry season. From these markets, fresh vegetables, leafy greens (n = 85), tomato (n = 85), and green pepper (n = 35) were analyzed for Escherichia coli. The prevalence of E. coli was highest on leafy greens; it was found in 74 (87 %) of the 85 samples. The prevalence of E. coli in green peppers was found in 2 (6 %) of the 35 samples. The prevalence of E. coli was lowest on tomatoes; it was found in only 1 (1 %) of the 85 samples. The lack of adequate water and sanitation infrastructure in market areas may be contributing to the bacteriological contamination of fresh produce. Providing venders with free access to market area toilets containing hand-washing facilities with soap and wash water with a chlorine solution may reduce bacterial contamination of fresh produce. Universal and sustainable access to water and sanitation services must include informal public market areas to reduce diarrheal diseases transmitted through food within Sub-Saharan Africa countries.  相似文献   

10.
The soil characteristics are critical for crop health and its yield and therefore for agriculture. The soil properties are spatially variable and therefore soil resources should be managed as per location-specific requirements. An integrated spatial analysis of the soil resources of Mewat district was conducted to identify the soil resource management zones to develop site-specific soil management plan which might lead to sustained and enhanced crop yield. Spatial analysis of soil resources was conducted by modeling soil fertility and erosion which determines the crop productivity in the region. Soil fertility of the region was modeled using weighted overlay approach using 10 soil parameters, namely nitrogen, phosphorus, potassium, sulfur, iron, zinc, manganese, organic carbon, electrical conductivity, and pH. Each parameter was assigned weights based on their relative importance to agricultural productivity. The modeled soil fertility was classified into three fertility zones, low, medium, and high. Soil fertility was found to be low to moderate in 65% of the area, largely because of the low nitrogen, soil organic carbon, phosphorus concentration, and excessive salinity. Soil erosion was modeled using the universal soil loss equation (USLE) model by estimating rainfall erosivity factor (R), the soil erodibility factor (K), the topographic factors (L and S), cropping factor (C), and the conservation practice factor (P). Soil erosion problems were limited to areas having high elevation with barren land and areas with minimal management practices. The severity of soil erosion was found high in 15% of the region, while the remaining 85% showed low to moderate erosion. Soil fertility and erosion were integrated using the multivariate clustering method to identify soil management zones. The region was delineated into three soil management zones. Zone I (29%) which covers majorly Tarou block, was characterized by high soil fertility and low soil erosion. Zone II (18%) with medium soil fertility and high erosion covers villages of Taoru, Nuh, Nagina, FP Jhirka, and Punhana, which are located in the foothills of Aravalli ranges. Zone III represents the major part of the region, covering Nuh, Nagina, and FP Jhirka blocks (54%) with low soil fertility and erosion conditions. Thus, within the study area, the soil management domains are spatially variable in terms of fertility and soil erosion, and thus zone-specific soil management measures are required to improve the soil condition in order to sustain and improve agriculture production. The study would help the policy makers to design site-specific planning for identified soil resource management zones.  相似文献   

11.
The study focuses on assessing the sustainable livelihoods of farmers in Indian Punjab focusing on the key aspects of cropping pattern, cost of cultivation, agricultural productivity and profitability amongst different classes of farmers at different levels of groundwater depletion. It further gives a comparative analysis of the proportionate gains the farmers avail from the government subsidies of electricity and procurement price and relates it to their coping mechanisms to sustain agriculture in future. The findings indicate to the fact that technology to extract groundwater, being capital intensive, gives greater accessibility to groundwater to large farmers who gain enormously from growing the remunerative but water-intensive rice crop. Electricity subsidy being not targeted is also misappropriated by the resource rich, water extraction machine owners. To cope with this resource depletion, the large farmers dig and deepen more tube-wells and the small and marginal farmers with little savings who are unable to invest in costly water extraction machines, buy water, shift to less profitable maize crop, lease out or sell their land.  相似文献   

12.
In the agriculture of the future, there is a compelling place for agroecologically-based practices alongside practices based on the best available chemical, genetic, and engineering components. This paper explores this issue in the context of the development and spread of a conservation farming system based on natural vegetative contour buffer strips in smallholder production systems in southeast Asia. Farmers adapted contour hedgerow farming practices into a simpler, buffer-strip system as a labor-saving measure to conserve soil and sustain yields on steeply sloping cropland in Claveria, Mindanao, Philippines. Permanent-ridge tillage systems were also adapted to smallholder farming systems by researchers. Natural vegetative buffer strips resulted in gradually increasing yields, with an estimated benefit of 0.5t/ha/crop. They were seen to increase land values, facilitate investment in more intensive and profitable cropping systems, and expand the land base for food crop agriculture. They induced an institutional innovation of farmer-led Landcare organizations, which have spread this and other agroforestry practices to thousands of households in the southern Philippines.  相似文献   

13.
The effect of changing the planting date on the dry season rice yield was simulated by using the software Decision Support System for Agrotechnology Transfer (DSSAT 4.5) for four rice varieties grown in Kurunegala district, Sri Lanka under expected climate change. Daily weather data up to the year 2090 were downscaled to the district from Global Climate Model outputs under the emission scenarios A2 and B2 published by the Intergovernmental Panel on Climate Change using the Statistical Downscaling Model (SDSM 4.2). The DSSAT model was applied to simulate future rice yields from four rice varieties grown in the district under three different planting dates: (1) planting in May—the base condition; (2) advancing the planting date by 1 month, i.e., to June; and (3) planting 1 month earlier, i.e., in April. Results show that the seasonally averaged dry season rice yield would increase compared to the base condition when the planting date is advanced by 1 month and, on the other hand, the seasonally averaged rice yield would decrease compared to the base condition when the planting date is delayed by 1 month for all four varieties under both A2 and B2 scenarios. Advancing the rice planting date by 1 month for all four rice varieties can be identified as a non-cost climate change adaptation strategy for rice production in Kurunegala district.  相似文献   

14.
Since 2000, the shrimp industry expands at a fast rate in the coastal areas of the Mekong Delta, Vietnam. Shrimp farming is known for its negative impact on the coastal environment. However, other human interventions like agriculture and urbanization also deteriorate the coastal environment. The land cover changes between 1968 and 2003 were determined and analyzed for the Cai Nuoc district, Ca Mau Province, Vietnam, using photos from 1968, 1992 (aerial photographs), 1997/98 (Spot) and 2003 (Landsat). It was clear that the district underwent serious land cover changes: deforestation between 1968 and 1992, with a simultaneous increase in rice land; a rapid decline in rice acreage from 1997 onwards, and, simultaneously, a blitz-increase in shrimp farming area. The forest area declined by 75% between 1968 and 2003. About 40% of this loss could be attributed to shrimp farming, while the remaining 60% was attributed to needs for agricultural land. Still, at present, shrimp farming is the major source of mangrove loss in the district. In 1999 shrimp farms covered 6.374 ha, in 2000 they covered 61.049 ha of the Cai Nuoc area. The swap from rice cultivation to shrimp farming was most-probably driven by households’ hopes for a higher income. It must be feared that the shrimp industry will have a negative impact on the environment (e.g. salinization) and on the livelihood of the district’s households. In 1968 saline water covered 219.9 km2, in 1992, 1997/98 and 2003 the saline surface water area covered 92.4, 135.2 and 835.0 km2, respectively. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

15.
Riparian wetland controls the transfer of terrestrial dissolved organic matter (DOM) to surface water bodies. However, the effects of land use on riparian soil DOM quality and its contribution to aquatic environment are largely unknown. In this study, the amount and composition of water-extracted soil organic matter (WSOM) in riparian wetlands were determined to evaluate the effect of land uses on spatial patterns of WSOM and streamwater quality on Chongming Island, China. The fluorescent properties of WSOM and fluvial DOM were analyzed using EEM spectra-combining PARAFAC model and accurate MS and MS/MS identification. Our findings showed no differences in the riparian WSOC contents between land use types (agricultural land, natural wetland, commercial land and industrial land). However, the fluorescent WSOM and its humic-like (Comp.1 and Comp.2) and microbial degradation (Comp.4) components significantly varied under different land uses (P < 0.05). Overall, the fluorescent WSOM quantities and its components (Comp.1, Comp.2 and Comp.4) were present at markedly lower concentrations for agricultural land use relative to the other three land uses. The same distribution pattern was observed for carbonyl compounds and fatty acids in the riparian WSOM molecules (P < 0.05), but the distribution patterns of the lipids were different between the four land uses (P < 0.05). Industrial land could result in the input of more organic matter into the riparian wetland. Our results showed that fluvial Comp.1 and Comp.2 were significantly correlated with WSOM Comp.2 and WSOM Comp.4 (P < 0.05). We also observed that the fluvial trophic status was significantly higher when the fluvial DOM components increased (P < 0.05). These results indicated that land uses can alter the composition of riparian WSOM, reshape fluvial DOM compositions and significantly affect fluvial water quality.  相似文献   

16.
Beaches are both sensitive and critical components of the coastal systems, as they are particularly vulnerable to environmental change (e.g., the sea level rise) and form valuable coastal ecosystems and economic resources. The objective of the present study has been to record the spatial characteristics and other attributes (e.g., topography, sediments and accessibility) of the 71 beaches of the E. Crete (Eastern Mediterranean) that are either already developed or have a reasonable development potential and assess their erosion risk under sea level rise. Beach retreats are predicted by ensembles of six cross-shore (1D) analytical and numerical morphodynamic models, set up/forced on the basis of collected/collated information and three sea level rise scenarios (0.26, 0.82 and 1.86 m); these retreats are then compared with the recorded maximum (dry) beach widths. Projections by the unified ensemble suggest that, in the case of a 0.26 m rise, 80 % of the examined beaches are to retreat by more than 20 and 16 % by more than 50 % of their maximum dry width. In the case of a 0.82 m rise, 72 % of the tested beaches are predicted to retreat by more than 50 % of their dry width and 21 % by a distance at least equal to their observed maximum dry widths. A sea level rise of 1.86 m represents a ‘doom’ scenario, as 75 % of the beaches are predicted to retreat by more than their maximum width. These results may be conservative, as other significant beach erosion factors (e.g., decreasing beach sediment supply) have not been considered.  相似文献   

17.
Dugout canoes are traditional boat types made from a single tree trunk. This type of boat can reveal unique connections between forest and fisheries in coastal areas: their construction and the species used depend on the local ecological knowledge of artisans and the plant resources available and are also influenced by the type of fisheries in which the canoe will be used. Our objective was to analyze how dugout canoes are constructed, maintained, and currently used in the central coastal region of Santa Catarina, Brazil. The study emphasizes the interaction between the use of forest resources and artisanal fishing in this coastal environment. The data collected were based on interviews with 30 artisans and participant observation. Schizolobium parahyba (Vell.) Blake, Ocotea porosa (Nees & Mart.) Barroso, Ocotea Aubl../Nectandra Roll. Ex Rottb., and Aspidosperma Mart. & Zucc. are the main taxa used to construct the canoes. Many canoe sizes are used, and based on the boat type, the trunk diameters needed to construct them varies from 0.6 to 2.9 m and trunk heights from 4 to 10 m. Different types of canoe are used according to the type of fishing and especially to the environment conditions. The construction of canoes in the region has decreased due to difficulties in acquiring wood, changes in fishing activities, and reasons related to labor and apprenticeship, all causes related to modernization of the society and urban growth. The knowledge of plant species used can contribute to shape policies to improve forest management. The survival of cultural practices in artisanal fishing communities should be stimulated in sustainable development programs, and it involves maintaining ecological and technical knowledge related to fishing and the plant resources used to manufacture and maintain fishing equipment.  相似文献   

18.
三峡库区复合农业生态系统及其建设途径   总被引:9,自引:1,他引:9  
通过田间试验研究了长江三峡库区主要的复合农业生态系统类型及其特点。应用生态学原理和间套作技术,在三峡地区建立了“小麦-玉米-红薯、小麦-蔬菜、柑桔-小麦、稻田复合系统”等多种复合农业生态系统。田间试验结果表明,旱地采用“小麦-蔬菜”方式比传统的“小麦-玉米-红薯”方式提高经济效益40% ̄47%,“中稻鸭鱼”模式的水稻产量达到了9540kg/hm^2,比对照提高12.5%。中稻-鱼、中稻-鸭鱼、中稻  相似文献   

19.
Overuse of nitrogen (N) fertilizers in agriculture activities has caused severe water pollution in China. The lack of data at producer level hampers decision makers in the development and implementation of efficient policies to curb excessive N-fertilizer use. In a survey of 300 farm households in the Liangzihu Lake basin, we identified factors associated with farmers’ decisions on N-fertilizer use and application rate. Household survey and multiple linear regression models indicate that the average application rate in the study region is 229 kg N ha?1, which exceeds the recommended rate for maximum profit for cereal crops (maize, wheat, and rice) in China of 150–180 kg N ha?1. High N-application rates are associated with low farmland productivity (coefficient = ?15.66, p = 0.02), a high share of off-farm income (coefficient = 27.14, p = 0.003), and a low education level of the household head (coefficient = ?10.83, p = 0.039). Neither physical infrastructure nor access to input markets appears to be related to N-application rates. It may be concluded that excessive use of N in agriculture of Central China is mainly a problem of insufficient awareness and high share of off-farm income.  相似文献   

20.
Magnitudes of land cover changes nowadays can be assessed properly, but their driving forces are subject to many discussions. Next to the accepted role of human influence, the impact of natural climate variability is often neglected. In this paper, the impact of rainfall variability on land cover changes (LCC) is investigated for the western escarpment of the Raya Graben along the northern Ethiopian Rift Valley. First, LCC between 2000 and 2014 were analysed at specific time steps using Landsat imagery. Based on the obtained LCC maps, the link was set with rainfall variability, obtained by means of the satellite-derived rainfall estimates (RFEs) from NOAA-CPC. After a correction by the incorporation of local meteorological station data, these estimates prove to be good estimators for the actual amount of precipitation (ρ RFE1.0 = 0.85, p = 0.00, n = 126; ρ RFE2.0 = 0.76, p = 0.00, n = 934). By performing several linear regression analyses, a significant positive relationship between the precipitation parameter DIFF 5Y (i.e. the at-RFE pixel scale difference in five-year average annual precipitation for the two periods preceding the land cover maps) and the changes in the woody vegetation cover was found (standardised regression coefficient β = 0.23, p = 0.02, n = 108). Despite the dominance of direct human impact, further greening of the study area can be expected for the future concomitantly to a wetter climate, if all other factors remain constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号