首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
FeS自养反硝化与厌氧氨氧化的耦合脱氮机制   总被引:3,自引:1,他引:3  
微生物的功能多样性对元素价态的转换存在协同作用是自然界关键的生态调节策略,充分利用这种策略,实现不同微生物的功能组合,可以发展废水处理新工艺.本文以静态批次实验的含氮污染物作为研究对象,把Fe S投加量、NO_3~--N/NO_2~--N比值、厌氧氨氧化(ANAMMOX,AN)和自养反硝化(AD)生物量之比作为反应控制条件,讨论了AN与AD之间代谢产物互补的合作机制,提出了(AN+AD)_(TN→0)脱氮工艺的概念.研究发现过量的Fe S投加在保证AD过程的彻底性之外,并不显著影响AN菌的代谢活性;提高NO_2~--N在电子受体中的比例,会使微生物复合群落处于代谢底物竞争关系之中,对TN的去除产生负面影响; AN生物量的增加加深了复合群落的合作程度,当初始NH_4~+-N与NO_3~--N的化学计量比小于0. 85时,可以实现TN浓度趋零.结果表明,通过认识微生物之间的交互作用,寻求复杂微生物群落功能的规划或调控,可以设计出更加合理的废水处理工艺,达到低物耗投入条件下目标污染物的高效去除.  相似文献   

2.

短程反硝化耦合厌氧氨氧化(PD-A)工艺外加碳源和曝气成本较低、NO2 生成稳定高效、总氮去除率高,并且可以减少温室气体N2O的排放,是一种新型的生物脱氮工艺。现有关于PD-A的研究多以水质条件单一的模拟废水为对象,针对实际废水的研究尚少。分析了PD-A工艺的机制与特点,通过对比核心功能菌短程反硝化菌和厌氧氨氧化菌的最佳生长条件,并结合现有研究提出PD-A工艺运行的优化策略,继而分析了PD-A工艺在实际废水中的应用案例。结果表明,优化COD/NO3 、接种不同结构的污泥和添加生物膜载体等有利于工艺高效稳定地运行;PD-A工艺在实际生活污水、养殖废水、高硝酸盐废水的处理中实现了较高的脱氮率,说明其处理实际废水具有可行性。最后,对PD-A工艺的发展进行展望,认为应以实际废水为处理对象,进一步研究系统内核心菌群的协同作用机制和混合生物脱氮调控方式,以提升工艺的稳定性及碳氮协同处理效率。

  相似文献   

3.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L-1,实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

4.
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究   总被引:2,自引:4,他引:2  
周健  黄勇  刘忻  袁怡  李祥  完颜德卿  丁亮  邵经纬  赵蓉 《环境科学》2016,37(3):1061-1069
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.  相似文献   

5.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

6.
采用连续流分段进水短程反硝化-厌氧氨氧化(partial denitrification-anaerobic ammonium oxidation,PD-Anammox)耦合反硝化工艺处理低C/N生活污水,研究了污染物去除、典型周期COD及氮素沿程变化特征、短程反硝化-厌氧氨氧化和反硝化对TN去除贡献。结果表明:在平均进水ρ(COD)、ρ(NH4+-N)、ρ(TN)为193.1,58.6,60.3 mg/L的条件下,系统出水平均ρ(COD)、ρ(NH4+-N)、ρ(TN)分别为46.3,1.5,13.4 mg/L,低于GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。采用NO3--N预缺氧和进水点后置,可实现缺氧区NO3--N→NO2--N转化,同时完成厌氧氨氧化过程;缺氧区设置厌氧氨氧化悬浮填料,可提高系统TN去除率。通过缺氧区物料衡算,缺氧1区厌氧氨氧化对TN去除贡献率(ΔPD-Anammox/ΔTN)均值为54.37%,缺氧2区的ΔPD-Anammox/ΔTN均值为64.17%。  相似文献   

7.
为实现厌氧氨氧化(Anammox)工艺的深度脱氮,在厌/缺氧运行序批式反应器(SBR)的厌氧段投加乙酸钠(100mgCOD/L)实现了内源反硝化与Anammox的协同脱氮,并考察了反应器的脱氮性能和微生物种群结构变化.结果表明,耦合内源反硝化可明显提升Anammox工艺的脱氮性能,系统的总无机氮(TIN)去除率由79.07%±2.63%提高至97.00%±1.35%,出水TIN降低为(3.30±1.49)mg/L.典型周期数据表明厌氧段合成的内碳源如聚羟基脂肪酸酯可为后续内源反硝化作用提供电子供体,但不对Anammox的反应速率产生影响,基于物料平衡分析表明系统的氮素主要通过Anammox作用去除(PAMX:PEDN=98.27%:1.73%).乙酸钠的投加刺激了系统中反硝化菌Thauera的大量增殖,但随着具有内源反硝化能力的Denitratisoma丰度上升,促进了Anammox菌Candidatus Brocadia的丰度恢复,实现了Anammox系统的深度脱氮.  相似文献   

8.
短程硝化-厌氧氨氧化生物脱氮研究进展   总被引:5,自引:1,他引:5  
在过去的几年,短程硝化-厌氧氨氧化脱氮技术得到了快速发展。对短程硝化的影响因素、厌氧氨氧化菌的基本生理特征及影响因素、基于短程硝化和厌氧氨氧化原理开发的SHARON-ANAMMOX、CANON、OLAND等脱氮工艺及应用研究现状进行论述,提出了存在的问题和研究方向。  相似文献   

9.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:1,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

10.
为探究中国南方农田土壤氮迁移过程的反硝化与厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)速率变化和脱氮贡献本研究采集宛山荡麦稻轮作区农田不同层深土壤及农田、沟道、河岸带和湖泊沉积物等不同土地利用类型土壤样品,分析其理化性质采用Illumina MiSeq测序和实时荧光定量PCR (quantitative real-time PCR,qPCR)技术探究土壤样品的微生物群落组成和功能基因丰度应用同位素培养实验测定各样品的潜在反硝化与厌氧氨氧化速率(以N2计,下同).结果表明,土壤反硝化速率与TOC、NH4+-N和NO3--N含量均显著正相关(P<0.05),与nirS、nirK及nosZ等功能基因丰度亦呈显著正相关(P <0.05).农田表层土壤反硝化速率为(11.51±1.04) nmol·(g·h)-1,显著高于农田其他土壤层以及其他土地利用类型(P <0.05),而农田土壤中厌氧氨氧化速率在20~...  相似文献   

11.
ANAMMOX菌铁自养反硝化工艺的稳定性   总被引:1,自引:0,他引:1  
张文静  黄勇  毕贞  胡羽婷  董石语 《环境科学》2019,40(7):3201-3207
在非严格厌氧的连续流反应器中,通过调节进水pH、外加一定浓度的Fe~(2+)以及定期更换新鲜铁粉这3种运行方式探讨维持厌氧氨氧化(ANAMMOX)菌利用零价铁去除硝酸盐反应体系长期稳定运行的适宜条件.结果表明,随着反应进行、受零价铁表面钝化的影响,该体系硝酸盐去除率逐渐下降,反应器难以持续运行.在一定范围内降低进水pH(5~7),或者额外投加一定量的Fe~(2+)对改善该反应体系的稳定性效果不显著.通过定期更换新鲜铁粉的方式,可以有效提高硝酸盐去除率、增强反应器稳定性.相比对照组可稳定运行7 d,实验组可至少稳定运行60 d,硝酸盐平均去除率提高22. 23%.因此,采取适宜措施保证体系内有足够具有活性的零价铁、消除零价铁钝化的不利影响,是ANAMMOX菌利用零价铁去除硝酸盐反应体系高效、稳定运行的关键.  相似文献   

12.
单级自养脱氮工艺氨氮去除途径研究   总被引:3,自引:1,他引:3  
杨国红  方芳  郭劲松  秦宇  魏英 《环境科学》2009,30(1):102-107
以SBBR单级自养脱氮系统的污泥为对象,采用不同的人工模拟废水为反应器进水,通过批式试验的方式研究了单级自养脱氮系统内的中间产物及氮素平衡情况,并探讨了氨氮的去除途径.结果表明,以仅含氨氮的人工模拟废水为进水,在未投加有机碳源的条件下,系统内62%的氨氮被转化为NO-2、NO-3、NH2OH、N24、NO、NO2、N2O和N2等一系列氮化合物,其中N2占90.07%.单级自养脱氮系统内的氨氮是由多种途径去除的.4.5%的氨氮是在吹脱等物化作用下去除的,不超过3.73%的氨氮是通过传统的硝化反硝化途径去除的,53.77%的氨氮是由自养脱氮途径去除的,自养脱氮反应起主要的脱氮作用,且自养脱氮反应可以通过2条代谢途径来实现.但在足够NO2存在并且缺氧的条件下,单级自养脱氮系统内的出水氨氮浓度与空白反应器相当,NH+4并没有被亚硝化单胞菌以NO2为电子受体氧化为NO-2和N2等化合物而得以去除,可能是因为系统内不存在该类型的亚硝化功能菌.  相似文献   

13.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

14.
基质比对厌氧氨氧化耦合反硝化脱氮除碳的影响   总被引:1,自引:0,他引:1  
安芳娇  黄剑明  黄利  乔瑞  王瑾  陈永志 《环境科学》2018,39(11):5058-5064
采用SBR处理实际生活污水,在实现半亚硝化时,其出水加入定量的Na NO_2作为厌氧氨氧化过程厌氧序批式反应器(ASBR)的进水.在温度为24℃、pH为7. 2±0. 2时,考察不同进水NO_2~--N/NH_4~+-N对厌氧氨氧化耦合反硝化脱氮除碳的影响.结果表明:(1)进水NO_2~--N/NH_4~+-N为1. 4~1. 6时系统脱氮效能最佳,NH_4~+-N、NO_2~--N和COD平均出水浓度分别为2. 14、1. 07和30. 50 mg·L~(-1),三者去除率分别为93. 62%、97. 79%和74. 75%,ΔNO_2~--N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1. 60和0. 17,TN的去除是异养反硝化菌和厌氧氨氧化菌共同作用的结果.(2)随着进水NO_2~--N/NH_4~+-N的逐渐增大,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.(3)典型周期内,NH_4~+-N和NO_2~--N的降解过程均为零级反应,线性关系良好,比降解速率分别为0. 404 mg·(g·h)~(-1)和0. 599 mg·(g·h)~(-1),两者的比降解速率之比为1. 48,COD的比降解速率呈现逐渐增大的趋势.  相似文献   

15.
采用厌氧氨氧化反应器(ASBR)处理模拟生活污水,考察低基质比、降温方式及pH对系统脱氮性能的影响.结果表明,温度为30℃时,控制进水NO_2~--N浓度为(30±0.2)mg·L~(-1),基质比(NO_2~--N/NH_4~+-N)由0.9升至1.4,系统NH_4~+-N和NO_2~--N去除率均值分别从54.4%和65.3%升至95.8%和92.5%;当基质比继续升高至1.6时,NH_4~+-N去除率基本不变,而NO_2~--N去除率降至54.6%,即基质比接近理论值1.32时,其厌氧氨氧化脱氮性能较强.当反应温度一次性从30℃降低至15℃时,NH_4~+-N和NO_2~--N的去除率由97.5%和98.5%分别降至35.2%和40.1%,当采用阶梯式降温方式(30℃→25℃→20℃→15℃)时,NH_4~+-N和NO_2~--N的去除率分别由97.7%和98.6%逐渐降至52.7%和62.4%.控制NO_2~--N/NH_4~+-N为1.4,逐步升高pH由7.7至8.5时,NH_4~+-N和NO_2~--N的去除率先增大后减小,当pH为8.3时系统脱氮性能最佳.  相似文献   

16.
主流厌氧氨氧化工艺的运行优化及其微生物的群落变迁   总被引:2,自引:0,他引:2  
付昆明  付巢  李慧  姜姗  仇付国  曹秀芹 《环境科学》2018,39(12):5596-5604
通过高氨氮污水驯化成熟的CANON生物膜反应器处理低氨氮污水,试验分为3个阶段:(1)连续曝气无机配水阶段(0~59 d),曝气量30 m L·min-1,调整氨氮浓度为80 mg·L~(-1),厌氧氨氧化脱氮效率较低,第56 d时,TN去除负荷仅为0. 13kg·(m~3·d)~(-1).(2)连续曝气生活污水阶段(60~110 d),有机碳源的进入使得CANON反应器在79 d时TN去除负荷提升至0. 22 kg·(m~3·d)~(-1).(3)由于DO浓度较低,其氨氮去除率仅为75%,为进一步提高氨氮和TN的去除效果,第110 d时,进入间歇曝气生活污水阶段(110~160 d),提高曝气量为50 m L·min-1,曝气30 min,停曝30 min,第131 d时,氨氮去除率提高至86. 34%,TN去除率和去除负荷分别达到85. 87%和0. 30 kg·(m~3·d)~(-1),这说明间歇曝气策略可以提升CANON反应器的脱氮性能.同时在试验开始前(0d)、连续曝气无机配水阶段(56 d)和间歇曝气生活污水阶段(152 d)时分别取样进行了高通量测序,分析不同阶段的微生物群落变化,结果表明:(1)Candidatus Brocadia相比Candidatus Kuenenia在低氨氮无机配水和生活污水阶段中受影响较小;(2)Nitrosomonas和Nitrospira分别为AOB和NOB的优势菌种,生活污水阶段对Nitrosomonas影响较大,对Nitrospira影响较小;(3)反硝化菌属始终存在CANON反应器中,其中假单胞菌属(Pseudomonas)、副球菌属(Paracoccus)适应性最强,但各阶段相对丰度均不超过0. 5%.  相似文献   

17.
王凡  刘凯  林兴  周正  李祥  黄勇 《环境科学》2017,38(8):3415-3421
采用SBR厌氧氨氧化反应器,研究了不同TOC与NH_4~+-N比值对厌氧氨氧化反应器的脱氮效能的长短期影响.结果表明,在有机物短期影响时,反应器所能承受的最大TOC/NH_4~+-N为1.4,总氮去除速率可达0.26 kg·(m~3·d)~(-1).长期影响下,在TOC/NH_4~+-N小于0.4时,反应器可获得最高脱氮效能,总氮去除率为0.34 kg·(m~3·d)~(-1),TOC/NH_4~+-N大于0.4后,反应器脱氮效能持续降低,并且短期内厌氧氨氧化菌难以迅速恢复活性.利用q PCR(定量PCR)技术对长期影响前后反应器内菌种群落变化做定量分析,结果表明随着有机物的增加,反应器中的ANAMMOX菌数量从2.9×10~(11)copies·mL~(-1)减少至3.15×10~(10)copies·mL~(-1),在TOC/NH_4~+-N大于1.6的环境中,NH_4~+-N未能由厌氧氨氧化菌去除,厌氧氨氧化菌不能表现出生物活性.此时测得反硝化菌数量为3.0×10~9copies·mL~(-1),反应器中的NO_2~--N绝大部分由反硝化去除,虽然反硝化菌数量远少于ANAMMOX菌,但能表现出远超ANAMMOX菌的活性.  相似文献   

18.
净化铁锰氨生物滤池内氨氮转化途径   总被引:3,自引:0,他引:3       下载免费PDF全文
为考察净化铁锰氨生物滤池内NH4+-N的转化途径,利用氮素计量关系和沿程试验研究了净化铁锰氨生物滤池内产生TNloss(氮损失)的原因和NH4+-N转化途径. 结果表明,净化铁锰氨生物滤池内DO消耗异常,TNloss不守恒,当进水ρ(NH4+-N)平均值分别为1.262、2.296、3.111 mg/L时,NLR(氮损失率)分别能达到7.89%、12.91%、17.73%. 利用硝化反应和CANON(全程自养脱氮)方程式计算得出理论TNloss和TDOC(理论耗氧量),与实际TNloss和ADOC(实际耗氧量)的差值分别小于±0.030、±0.10 mg/L,各阶段NH4+-N 通过CANON途径转化的比例分别为48.58%、60.77%、68.10%,硝化反应和CANON途径共同参与了NH4+-N转化. 沿程试验结果表明,整个试验阶段,NO2--N在滤层中均有积累,并在滤层厚度为10~18 cm内出现NO2--N和NH4+-N共存的现象,进一步证明CANON途径是净化铁锰氨生物滤池内产生TNloss的原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号