共查询到16条相似文献,搜索用时 78 毫秒
1.
中等挥发性有机物(Intermediate Volatility Organic Compounds,IVOCs)是二次有机气溶胶(SOA)的重要前体物.然而,当前我国IVOCs排放清单研究相对较少,现有研究大多采用基于IVOCs/POA比值法估算,导致IVOCs排放表征存在很高的不确定性.以移动源为研究对象,在优先采用本土实测的排放因子的基础上,构建了基于实测排放因子的广东省2019年移动源IVOCs排放清单,并与基于IVOCs/POA比值法建立的排放清单进行对比评估.结果显示:2019年广东省移动源IVOCs总排放量为2.1万t,其中,道路移动源IVOCs排放量为1.5万t,占总排放量的70%,主要来自柴油重货(33%)、柴油轻货(23%)、汽油小客(14%).其中,道路移动源IVOCs汽油车主要以国四、国五标准车型为主,分别占 汽油车排放的36%和49%,而柴油车主要以国三、国四标准车型为主,分别占柴油车排放的53%和28%.相比实测因子法,比值法计算的道路移动源IVOCs排放整体偏高了100%~200%,但计算的非道路移动源IVOCs排放整体偏低了近1/3.通过不确定性量化对比也发现,实测因子法建立的IVOCs排放清单不确定性整体比比值法平均降低了60%,表明实测排放因子能够提高IVOCs表征的可靠性.此外,本土和国外实测排放因子建立的道路移动源IVOCs排放也有明显差异,采用国外实测排放因子可能会导致广东省2019年道路移动源IVOCs排放低估30%~50%. 相似文献
2.
中等挥发性有机物(IVOCs)对大气中二次有机气溶胶(SOA)的生成有重要贡献,但尚未包括在目前的排放清单中.本研究以长三角地区为研究对象,分别基于排放因子法和IVOCs/POA比例系数法对长三角地区2017年机动车IVOCs的排放量进行估算,构建长三角地区2017年机动车IVOC排放清单,分析其不确定性并估算其对SOA生成潜势的影响.基于排放因子法的结果表明,2017年长三角地区机动车IVOCs排放总量为3. 58万t,SOA的生成潜势为695 t,其中载货汽车的IVOCs排放量在长三角大部分城市的占比均超过70%;从燃料类型来看,柴油车的IVOCs排放量远高于汽油车.基于IVOCs/POA比例系数法的结果表明,由不同的IVOCs/POA比例以及不同的POA/PM2. 5占比得到的排放清单结果差别巨大,最大值可达64. 2万t,最小仅为5. 2万t,造成的SOA生成潜势分别为1. 55万t和1 032 t.本研究表明基于不同的估算方法构建的IVOCs排放清单结果差别巨大,具有很大的不确定性,将直接影响后续空气质量模型对SOA的模拟结果.因此,需进一步将不同清单结... 相似文献
3.
生物质户外燃烧是影响环境空气质量的重要污染源,东北三省作为我国的重要农业产区,分析其生物质户外燃烧情况能够为当地秸秆资源综合利用和环境质量改善等提供依据.该研究基于卫星火点排放清单(Fire INventory from NCAR,FINN),分析了我国东北三省2016-2020年生物质户外燃烧火点的时空分布特征,结合空气质量监测数据进行了重污染天气成因分析,并建立了可用于数值模拟的生物质户外燃烧源网格化清单.结果表明:(1)东北三省2018-2019年火点数量较2016-2017年大幅减少,2020年有所增加.年内火点主要出现在春秋两季,春季相对更多.火点主要分布在东北平原,即黑龙江省的东部和西部,以及吉林省西部等,其他地区火点数量相对较少,呈零散式分布的特点.(2)该研究搭建了东北三省2016-2020年生物质户外燃烧源网格化清单,清单空间分辨率为3 km,污染物种类包括SO2、NOx、CO、NMVOC、NH3、PM10、PM2.5、BC和OC等,2016-2020年污染物... 相似文献
4.
通过收集各类S/IVOCs排放源的活动水平数据,选取合适的排放因子和估算方法,建立了2019年江苏省半/中等挥发性有机物(S/IVOCs)排放清单,分析了江苏省各地市以及各排放源的排放特征.结果表明,2019年江苏省排放S/IVOCs约637.31 Gg,其中工业源排放最多,占比达到63.42%,其次为道路移动源(22.23%),非道路移动源占比最少(0.06%).江苏省13地市中,苏州市S/IVOCs排放量最高(161.86 Gg),占江苏省S/IVOCs排放总量的25.40%;单位面积排放强度苏州市最高(18.70 t·km-2),而单位GDP排放强度连云港市最高(22.45 t·亿元-1).江苏南部S/IVOCs的排放量较中部和北部地区高,各地市S/IVOCs总排放量、单位面积排放强度和单位GDP排放强度相差均较大.全省S/IVOCs排放量的不确定范围在-88.46%~224.38%,其中生物质燃烧源的不确定范围最大,为-96.40%~277.17%. 相似文献
5.
中等挥发性有机物(intermediate-volatility organic compounds,IVOCs)是近年备受关注的二次有机气溶胶的重要前体物,但目前急需包括民用固体燃料燃烧在内的源排放数据.本文选择两种成熟度不同的烟煤(灵武煤和徐州煤)和两种生物质(稻秆和松木)为研究对象,结合石英管式炉和稀释通道开展7个温度点(300~900℃,以100℃为间隔)的燃烧实验,采集和分析烟气中的IVOCs,探讨煤和生物质燃烧的IVOCs排放因子、组成以及燃烧温度的影响.结果表明,生物质燃烧的IVOCs平均排放因子[(483±182) mg·kg-1]比烟煤[(190±108) mg·kg-1]高2. 5倍;组成方面,生物质和煤的IVOCs均以剩余UCM占主导[分别为(81±11)%和(68±6)%],而生物质排放的正构及支链烷烃占比明显低于烟煤,但芳香烃略高;燃烧温度对两类燃料的影响存在显著区别:烟煤(以灵武煤为例)的IVOCs在500℃[(340±113) mg·kg-1]比900℃[(63±15)mg·kg-1]高5. 4倍,而生物质在400~500℃和800~900℃时呈现两个含量相当的峰值;随着燃烧温度提升,松木IVOCs中芳香烃的占比从1%增加到29%,剩余UCM则从92%降低到61%,烟煤的变化幅度则很小.进一步结合校正燃烧效率对两类燃料和燃烧温度影响IVOCs排放的机理进行了解释. 相似文献
6.
中国工业源挥发性有机物排放清单 总被引:8,自引:5,他引:8
以工业源挥发性有机物(VOCs)为研究对象,在前期建立的工业源典型污染源分类系统基础上,对污染源系统和重要污染源排放系数进行修正和更新,采用排放系数法建立了2018年我国工业源VOCs排放清单.结果表明, 2018年我国工业源VOCs排放量为12 698 kt.含VOCs产品的使用环节贡献最大,占工业源排放总量的59%.工业涂装、印刷和包装印刷、基础化学原料制造、汽油储存与运输和石油炼制是排放量贡献最大的5大污染源,占工业源排放总量的54%;广东、山东、浙江和江苏是工业VOCs贡献最大的4个省份,排放总量占工业源VOCs总量的41%.海南、宁夏、西藏、黑龙江和新疆这5个省单位工业增加值VOCs排放强度最大,均超过了80 t·(亿元)-1.大多数省份工业VOCs排放主要来自含VOCs产品的使用环节;采用Monte Carlo模拟2018年我国工业源VOCs排放清单95%置信区间不确定度为[-32%, 48%]. 相似文献
7.
沈阳市人为源挥发性有机物排放清单研究 总被引:1,自引:0,他引:1
对沈阳市各类人为源VOCs进行分类,收集活动水平数据,应用国内外最新研究成果,采用排放因子法建立了沈阳市2015年人为源VOCs排放清单。结果表明:2015年沈阳市人为源大气VOCs排放总量为13.75万t,其中,化石燃料燃烧源、工艺过程源、移动源、溶剂使用源、生物质燃烧源、储存运输源、废弃物处理源和其它排放源排放量分别占VOCs排放总量的5.35%、55.02%、12.70%、16.51%、8.87%、1.41%、0.24%和0.17%。化学原料和化学品制造业、石油加工、炼焦和核燃料加工业、橡胶和塑料制品业和纺织业为工艺过程源重点排放行业,VOCs排放量占到工艺过程源排放总量的97.16%;表面涂层和其他溶剂使用是溶剂使用源的重点排放行业,VOCs排放量占到溶剂使用源总排放量的81.15%。 相似文献
8.
中国生活源挥发性有机物排放清单 总被引:2,自引:1,他引:2
生活源已成为重要的挥发性有机物(VOCs)人为排放源之一.构建了系统的中国生活源VOCs排放源分类方法和核算体系,在此基础上建立了2010~2018年中国生活源VOCs排放清单,并对生活源VOCs排放重要源类和省份等进行识别,最后对生活源VOCs控制提出了对策建议.结果表明,2018年中国生活源VOCs排放量为2 518 kt.建筑装饰、沥青道路铺装、餐饮油烟和农村家用生物质使用是贡献最大的4类源,合计占比69.22%.家庭日化用品使用和居民生活和商业煤炭使用贡献相当,占比分别为10.43%和9.98%.此外,汽车修补也有一定的贡献,占比为7.75%.山东、四川、河南、广东、江苏和河北是VOCs排放贡献最大的6个省份,合计占生活源VOCs排放总量的36.01%. 2010~2018年期间,中国生活源VOCs排放先以0.43%的速度增加,2013年达到峰值排放后开始下降,下降速度为2.23%.下降原因一方面与居民生活用能的清洁化,以及北方地区大力推进清洁取暖使生活煤炭、生物质消耗逐步减少等有关,另一方面与该阶段部分地区房屋建设逐步趋于饱和导致全国年房屋竣工面积减少有一定贡献.建议全面深入... 相似文献
9.
2011~2019年中国工业源挥发性有机物排放特征 总被引:1,自引:2,他引:1
为阐明近年来我国工业源挥发性有机物(volatile organic compounds,VOCs)排放特征,对排放源分类体系进行完善并采用动态排放因子法,建立了2011~2019年中国工业源VOCs排放清单.结果表明,全国工业源VOCs排放量从2011年11122.7 kt增长到2017年13397.9 kt,而后增长势头得到遏制并略有下降,到2019年下降至13247.0 kt.4个环节的排放结构发生改变,基础化学原料制造、汽油储运、涂料、油墨、颜料及类似产品和工业防护涂料涂装等排放源对相应环节的排放贡献不断上升,相反汽车、集装箱制造与石油和天然气加工等行业排放贡献有所下降.2019年全国工业源VOCs排放中,工业涂装、印刷和基础化学原料制造排放量大(共占总量的39.2%),且近9年排放占比不断增加,是今后需关注的重点排放源;空间上,华东和华南地区VOCs排放最多,山东、广东、江苏和浙江是贡献最大的4个省份,合计占总量的40.6%. 相似文献
10.
苏州市人为源挥发性有机物排放清单研究 总被引:4,自引:0,他引:4
以2009年为基准年,使用排放因子法估算了苏州市人为源的VOCs排放量,建立了苏州市分行业的挥发性有机物排放清单。结果表明2009年苏州市VOCs排放量17.79万吨,其中工业源和移动源排放量最大,分别为10.15万吨和6.29万吨,生活源和生物质燃料燃烧源的排放量分别为0.62万吨和0.73万吨。除移动源外(占比35%),金属制品制造、通用设备及专用设备制造、机械制造等行业的(涂装)VOCs排放量最大,占总排放量的20%,其次为塑料制品制造、轮胎制造、黑色和有色金属冶炼、合成材料,上述6个行业的VOCs排放量占排放总量的80%以上,是苏州市VOCs排放的重点行业。 相似文献
11.
基于长三角区域41个城市本地实测,结合美国EPA的SPECIATE 4.4数据库,建立了长三角区域人为源活性挥发性有机物(VOCs)高分辨率排放清单,分析了区域内VOCs的排放特征和组分构成;计算了VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP).结果表明,2017年,长三角区域人为源VOCs排放总量为4.9×106 t,其中工艺过程源、工业溶剂使用源、移动源、生活源、储运源、农业源和废弃物处理源排放贡献分别为:34.3%、27.1%、19.5%、9.7%、6.1%、2.5%和0.4%.芳香烃和烷烃是VOCs的主要种类,均各占长三角VOCs排放总量的25%.工艺过程源、工业溶剂使用源、移动源和生活源OFP贡献率分别为38.3%、21.5%、16.4%和13.2%,SOAP贡献率分别为26.2%、34.1%、18.1%和17.9%,与VOCs排放量的主要贡献源基本一致.各城市VOCs重点排放行业存在较大差异,重点城市群以石化化工和装备制造为主,区域北部则以木材家具等涂装行业为主.计算表明,丙烯、间/对-二甲苯和乙烯是臭氧主要贡献源;甲苯、1,2,... 相似文献
12.
长江三角洲地区基于喷涂工艺的溶剂源VOCs排放特征 总被引:3,自引:6,他引:3
了解挥发性有机物(volatile organic compounds,VOCs)的溶剂源排放特征是制定长江三角洲地区PM2.5和臭氧防控策略的关键.本研究通过罐采样-GC-MS/FID测定了长江三角洲地区重点喷涂行业(集装箱喷涂、造船喷涂、木器喷涂和汽车喷涂业)的VOCs排放特征.结果表明,长江三角洲地区喷涂行业排放的主要VOCs组分为甲苯、二甲苯、乙苯等芳香烃类物质,三者之和占总VOCs的质量分数为79%~99%.生产工艺的不同对VOCs的排放组成影响并不大,废气处理装置中活性炭吸附对VOCs的组成并无明显影响,而催化燃烧的处理过程会使VOCs的排放组成产生显著变化,乙烯排放明显增大,同时也使得催化燃烧处理最大增量反应活性(maximum increment reactivity,MIR)值高于活性炭吸附处理后的MIR值,说明不同的处理措施的使用将影响VOCs对臭氧的生成作用. 相似文献
13.
以美国加州和中国台湾有害挥发性有机物(HVOCs)排污收费物种为依据,筛选8种HVOCs物种,分别为苯、甲苯、二甲苯、乙苯、苯乙烯、二氯甲烷、1,1-二氯乙烯和三氯乙烯,通过排放因子法,建立了2014年的长三角地区典型化工行业总VOCs排放清单,VOCs排放量为13. 55万t,结合工艺源项HVOCs物种排放占比,建立了长三角地区典型化工行业的HVOCs排放清单,2014年排放量HVOCs约为5. 24万t,其中占比最高的HVOCs物种为二氯甲烷和苯,HVOCs占VOCs排放较大的工艺源项为聚氨酯类树脂、烷基苯、乙苯、丙烯酸树脂、氯苯、乙苯、环己酮、乙烯及聚苯乙烯等的生产. 相似文献
14.
长三角区域非道路移动机械排放清单及预测 总被引:1,自引:5,他引:1
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义. 相似文献
15.
珠江三角洲印刷行业VOCs组分排放清单及关键活性组分 总被引:4,自引:1,他引:4
根据珠江三角洲地区印刷行业活动数据和不锈钢罐采样-气质联用技术,获取了印刷工艺VOCs成分谱,建立了该地区2010年印刷行业VOCs组分排放清单,研究了不同工艺排放的臭氧生成潜势. 结果表明:该地区2010年印刷行业VOCs排放总量达8591.26t,深圳、东莞、佛山排放量较大.凹印是印刷行业主要VOCs排放工艺,排放量达5762.01t;平印和凸印次之,分别为1954.01和37.82t.不同工艺排放的VOCs组分差异较大,平印工艺排放的VOCs成分中异丙醇含量最多(306.58t),其次为正庚烷(115.87t);苯和甲苯是凸印工艺排放的VOCs成分中含量最大的2种化合物,分别达5.58和4.83t;乙酸乙酯是凹印工艺排放的VOCs成分中的首要化合物,达2482.85t.凸印工艺排放的VOCs单位浓度臭氧潜势最大,达1.30μg/m3,平印和凹印较小,分别为0.89和0.72μg/m3,各工艺排放的含氧有机物对臭氧生成潜势的贡献均为最大. 相似文献
16.
为了探究长三角区域大气细颗粒物中非极性有机化合物的组成及来源特征,于2019年12月至2020年11月在临安区域大气本底站采集了129个PM2.5样品,对其有机碳(OC)、元素碳(EC)和非极性有机化合物(NPOCs,包括多环芳烃、正构烷烃和藿烷类)进行了分析,并用分子示踪物、特征比值和正定矩阵因子分析模型等方法探究了有机气溶胶的主要来源.结果表明,临安ρ(PM2.5)的年平均值约为(32.36±20.44)μg·m-3,ρ(NPOCs)年平均值约为(59.05±40.39)ng·m-3,呈现出冬高夏低的季节变化特征.正构烷烃主要源于化石燃料和生物质(草和木材等)燃烧等人为源,其次为高等植物角质层蜡排放;多环芳烃主要源于燃煤燃烧、机动车排放和生物质燃烧等非化石源的混合贡献;藿烷类物质主要源于机动车排放,其中冬季还受到燃煤源的影响.后向轨迹聚类分析和潜在源区分析表明临安主要受到外来气团输送的影响.结合正定矩阵因子分析模型对采样期间观测到的NPOCs进行源解析,得到了燃煤燃烧源、交通排放源和生物质燃烧等... 相似文献