首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cu2+和Pb2+在BS-12两性修饰膨润土上的吸附及其交互作用   总被引:1,自引:0,他引:1  
两性表面修饰可以同时提高黏土矿物对有机物、重金属的吸附性能,研究两性修饰土对多种重金属共存条件下的吸附及交互作用对于其应用具有实际意义.采用红外光谱(FTIR)对膨润土(CK)和150BS-12修饰土(150BS-12)吸附金属离子前后进行表征,通过批处理法研究不同比例BS-12修饰膨润土对Cu~(2+)和Pb~(2+)在单一及Cu-Pb复合体系中的平衡吸附特征和差异,并探讨金属离子在修饰土样上的交互作用机制.结果表明,供试土样在单一及复合体系中对Cu~(2+)和Pb~(2+)的吸附量均呈150BS-12 100BS-12 50BS-12 CK的顺序,吸附均符合Freundlich和Langmuir模型; BS-12修饰更有利于Cu~(2+)的吸附,但Pb~(2+)在BS-12修饰土样上的吸附量及选择性系数均大于Cu~(2+); Cu-Pb复合体系中,两种金属离子存在相互拮抗的作用,BS-12修饰在减弱Pb~(2+)对Cu~(2+)的拮抗作用的同时增强了Cu~(2+)对Pb~(2+)的拮抗作用,但Pb~(2+)对Cu~(2+)的拮抗作用仍大于Cu~(2+)对Pb~(2+)的拮抗作用;温度升高、p H升高和离子强度降低均能增加对Cu~(2+)和Pb~(2+)的吸附,但其对两种金属离子的影响程度不同,也导致对金属离子间的交互作用产生影响.  相似文献   

2.
铜绿假单胞菌对铜和铅的吸附   总被引:3,自引:0,他引:3  
研究了铜绿假单胞菌(Pseudomonas aeruginosa)对Cu和Pb的吸附特性.结果表明,相同条件下,该菌株对Cu~(2+)的吸附率低于Pb~(2+).对于单一重金属体系,吸附率均随时间的延长先上升后平稳变化,2 h达到稳定.吸附率随投菌量的增加先迅速增加,之后趋于平稳.对于Cu~(2+),投菌量为1 g·L~(-1)时吸附率达到稳定,而Pb~(2+)的吸附效果达到平稳时的投菌量为0.5 g·L~(-1).单位质量菌体对Cu~(2+)、Pb~(2+)的吸附量随投菌量的增加而下降.pH为3时,菌体的吸附效果较差,当pH为5~8时,2种重金属的吸附效果较高.对于活菌,Pb~(2+)对菌体吸附Cu~(2+)有抑制作用,而Cu~(2+)对菌体吸附Pb~(2+)的影响无明显规律.对于失活菌,P.aeruginosa吸附Pb~(2+)和Cu~(2+)的效果均随共存重金属浓度的增大而降低,但Cu~(2+)对Pb~(2+)的影响比Pb~(2+)对Cu~(2+)的影响更显著.扫描电镜观察发现,吸附后的菌体较吸附前聚集性更好.总体而言,P.aeruginosa能对水体中共存的Cu~(2+)和Pb~(2+)有较好的吸附效果.  相似文献   

3.
董明  宋卫锋  程亚杰 《环境科学学报》2016,36(12):4367-4375
微生物胞外聚合物(Extracellular Polymeric Substances,EPS)在废水中重金属的吸附去除过程中起着非常重要的作用.苯胺黑药高效降解菌(Bacillus vallismortis)对苯胺黑药有良好的降解能力,但对其吸附重金属的性能研究还不充分.因此,本文采用3种方法提取苯胺黑药高效降解菌的EPS,主要考察了p H、温度、底物浓度和时间对重金属去除效果的影响.结果表明,热提法提取的效率较高;p H对金属离子吸附影响很大,当p H7时,随着p H变大吸附量逐渐升高,而温度对吸附量影响不大.EPS对Cu~(2+)、Zn~(2+)的去除为快速表面吸附过程,在第8 min时对Cu~(2+)、Zn~(2+)的去除率分别达到了90.7%、52.3%,EPS对Cu~(2+)、Zn~(2+)的吸附表观上符合拟二级动力学规律.在单一体系中,根据Langmuir方程计算出EPS对Cu~(2+)的最大吸附量为2.155 mg·mg-1,对Zn~(2+)的最大吸附量为0.508 mg·mg-1;Cu~(2+)吸附过程与Freundlich方程拟合效果较好,Zn~(2+)吸附过程与Langmuir方程拟合效果较好.红外光谱分析结果表明,EPS表面的羟基、氨基、酰胺基团、羧基和C—O—C基团都参与了吸附,且Cu~(2+)和Zn~(2+)的吸附位点基本一致,本文的研究结果对工程实践具有一定的理论指导意义.  相似文献   

4.
两性修饰蒙脱石对水中镉和四环素的吸附性能研究   总被引:2,自引:2,他引:0  
以两性表面活性剂十二烷基二甲基甜菜碱(BS-12)为改性剂制备两性修饰蒙脱石(BS-Mt),在单一体系和Cd~(2+)+TC复合体系中研究其对Cd~(2+)和四环素的吸附行为,同时利用XRD、FTIR、TG-DSC和Zeta电位对两性修饰蒙脱石进行表征分析.表征结果显示,BS-12已成功负载到蒙脱石上,改性后材料表面的负电荷增加;吸附实验结果显示,BS-Mt对Cd~(2+)和四环素的吸附量较Mt有较大的提高;其中BS-Mt对Cd~(2+)的吸附行为符合Langmuir等温吸附模型和准一级动力学模型,吸附机理主要为电荷吸附和螯合作用;BS-Mt对四环素的吸附随p H的升高而降低,吸附行为符合Freundlich等温吸附模型和准二级动力学模型,吸附机理主要为电荷吸附和物理吸附.在Cd~(2+)+TC复合体系中Cd~(2+)和TC会形成复合物,Mt和BS-Mt对四环素和Cd~(2+)的吸附量比单一体系增加.  相似文献   

5.
为了深入了解液/固体系Cu~(2+)、Zn~(2+)、Mn~(2+)在硅藻土表面的吸附行为与特性,为硅藻土在含重金属离子废水处理上的应用提供充分的理论依据,采用静态吸附试验对Cu~(2+)、Zn~(2+)、Mn~(2+)在硅藻土表面的吸附条件、性能、行为与特性进行了系统的研究.结果表明,硅藻土投加量和离子初始浓度对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的影响均可归结为液/固比(液相离子与硅藻土的质量比)的影响,过高或过低的液固比均不利于吸附,硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)所需的最佳液/固比分别为0.025、0.100和0.100.溶液初始pH值对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的影响主要与溶液初始pH值与硅藻土等电点(2.0)之间的距离有关,接近或低于硅藻土等电点都不利于吸附,过高的pH值会使Cu~(2+)、Zn~(2+)、Mn~(2+)发生沉淀,也不利于吸附,硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)所需的最适溶液初始pH值区间分别为4.0~6.0、4.0~7.0和4.0~7.0.溶液温度对硅藻土吸附Cu~(2+)、Zn~(2+)、Mn~(2+)的液膜扩散、颗粒扩散和吸附反应3个过程的影响不一致,导致对吸附量的影响无明显规律.硅藻土对Cu~(2+)、Zn~(2+)、Mn~(2+)的吸附分别符合Langmuir、Tenkin、Freundlish等温吸附模型,以物理吸附为主,吸附反应容易进行,在40 min达到平衡,吸附容量(25℃时)理论值分别为4.335、23.031、3.844 mg·g~(-1).吸附是自发的、吸热的、无序性增加,符合二级动力学模型.吸附速率的控制步骤为发生在孔道内部的吸附反应.  相似文献   

6.
老化微塑料对水体中重金属铜和锌的吸附行为研究   总被引:1,自引:0,他引:1  
微塑料(Microplastics,MPs)在水环境中可以作为重金属载体,对金属离子的迁移和毒性效应产生较大影响.本文开展了紫外光老化后的聚丙烯(Polypropylene,PP)和聚乙烯(Polyethylene,PE)对两种重金属离子Cu2+和Zn2+在单一和二元复合体系中的吸附行为研究.通过拟一级和拟二级动力学模型研究发现,微塑料对重金属离子的吸附过程更符合拟二级动力学过程,利用Langmuir模型和Freundlich模型对吸附等温线结果进行拟合,结果表明,在单一体系中,相同老化条件下的PP相比PE对金属离子的平衡吸附量更高,且对Cu2+的吸附量均大于对Zn2+;在二元复合体系中,由于竞争吸附作用,MPs对重金属离子的吸附量小于在单一体系中的吸附量,且MPs对重金属离子的吸附过程更符合Freundlich模型,即吸附主要以多层吸附为主.吸附热力学研究表明,老化PP和PE微塑料对Cu2+和Zn2+的吸附行为属于自发吸热过程.微塑料PP和PE吸附前后对莱茵衣藻的毒性试验结果表明,微塑料存在均对藻类的生长有抑制作用,但吸附重金属后的微塑料对藻的生长抑制率有所降低.通过藻的酶活性(包括超氧化歧化酶(SOD),丙二醛(MDA)和过氧化氢酶(CAT))的测定结果表明,微塑料对藻造成一定的氧化损伤,而吸附重金属后的微塑料的毒性作用下降.本论文可以为环境中微塑料存在下复合污染物的竞争吸附行为和联合生态效应研究提供理论依据.  相似文献   

7.
两种木材生物炭对铜离子的吸附特性及其机制   总被引:21,自引:4,他引:17  
为探索高效利用废弃生物质资源制备生物炭去除水体和土壤中Cu~(2+)污染的可行性,本文以常见的农林废弃物苹果树枝和梧桐木锯末为原料,采用450℃限氧热裂解法制备生物炭,通过两种生物炭对Cu~(2+)的批量吸附试验,利用4种等温吸附模型(Langmuir、Freundlich模型、Temkim、D-R模型)和4种吸附动力学模型(准一级动力学、准二级动力学、Elovich模型、颗粒内扩散模型)研究了苹果枝和锯末生物炭对Cu~(2+)的吸附行为.同时,使用FTIR红外、SEM和BET比表面积及孔径分析等技术表征了生物炭的理化性质,研究了两种生物炭对Cu~(2+)吸附机制,分析了两种生物炭之间的吸附特性差异及其影响因素.结果表明:(1)苹果枝生物炭在3 h达到吸附平衡,理论最大吸附量为15.85 mg·g~(-1),锯末生物炭在6h达到吸附平衡,理论最大吸附量为17.44 mg·g~(-1),与其他研究相比,这两种生物炭体现了较高的Cu~(2+)吸附性能;(2)两种生物炭对Cu~(2+)的热力学吸附均较好地符合Langmuir模型,表明吸附过程主要是近似单分子层的有益吸附;动力学吸附均符合准二级吸附动力学模型,表明其对Cu~(2+)的吸附包括表面吸附、颗粒内扩散和液膜扩散等多种过程;(3)吸附机制主要包括静电吸附,配体(酚羟基)/离子(H+)交换和阳离子—π键作用.  相似文献   

8.
采用活性炭/海藻酸钠-聚乙烯醇复合水凝胶(CAP)为吸附剂,以水溶液中的亚甲基蓝(MB)和Cu~(2+)为目标污染物,考察了固液比、p H、温度、反应时间、MB和Cu~(2+)的初始浓度等因素对吸附过程的影响.通过SEM、FTIR、BET等手段对CAP物化性质进行了表征.结果表明,CAP内部呈现互穿的三维网络多孔结构,成功复合了活性炭,具有丰富的—COOH和—OH官能团,比表面积可达112.7 m~2·g~(-1).CAP对MB和Cu~(2+)的吸附量随着固液比、温度的增大而降低,随着溶液初始p H的升高而增大;吸附属于Langmuir单层吸附,对MB和Cu~(2+)的最大吸附量分别为1 940.75 mg·g~(-1)和190.48 mg·g~(-1);反应时间在5 h内吸附量可达最大吸附量的90%,吸附动力学过程符合准二级动力学方程;活性炭/高分子复合水凝胶经过5次吸附-脱附循环再生后,仍能保持优异的吸附性能.  相似文献   

9.
以海藻酸钠和聚乙烯醇为骨架负载磁性纳米Fe_3O_4颗粒合成了两种磁性高分子复合水凝胶材料:一种是以Ca~(2+)交联制备的磁性海藻酸钙单网络水凝胶(SAPFe),另一种是以海藻酸钙和聚乙烯醇经循环冷冻解冻制成的磁性双网络水凝胶(DAPFe).利用SEM、FTIR、BET对合成的材料进行表征,并研究了SAPFe和DAPFe对Cu~(2+)的吸附性能.结果表明,DAPFe比表面积达89.01 m~2·g~(-1),平均孔径为2.2 nm,DAPFe比SAPFe具有更低的含水率、更高的交联程度、更发达的孔隙结构和更高的比表面积.DAPFe对Cu~(2+)的最大吸附量可达207.01 mg·g~(-1),远大于SAPFe(173.01 mg·g~(-1)).SAPFe和DAPFe对Cu~(2+)的吸附等温线均符合Langmuir模型,吸附动力学符合准二级吸附动力学模型.通过分析SAPFe和DAPFe吸附Cu~(2+)前后官能团的变化,发现磁性高分子复合水凝胶具有丰富的羧基和羟基功能性官能团,并通过与Cu~(2+)产生螯合作用实现去除.  相似文献   

10.
文章通过采用SEM、XRD、FTIR分析4A分子筛吸附重金属离子Pb~(2+)、Cd~(2+)、Zn~(2+)、Cu~(2+)前后形貌和结构的变化,探讨了这4种重金属离子在4A分子筛上的吸附性能和机制。研究结果表明:4A分子筛吸附Pb~(2+)和Cd~(2+)后,分子筛的形貌和结构未发生改变,吸附Zn~(2+)和Cu~(2+)后,4A分子筛表面有氢氧化物沉淀附着;吸附Cu~(2+)后,4A分子筛的XRD特征衍射峰消失,表明其晶相结构发生了改变,转化为无定形,此外,属于4A分子筛骨架的部分红外特征吸收峰减弱至几乎消失;Pb~(2+)、Cd~(2+)、Zn~(2+)、Cu~(2+)在4A分子筛上的吸附符合Langmuir等温吸附模型,最大吸附量分别为2.818、2.514、2.317、1.877 mmol/g,而拟二级动力学吸附速率常数Pb~(2+)Cd~(2+)Cu~(2+)Zn~(2+)。4A分子筛对Pb~(2+)和Cd~(2+)的去除机理主要为离子交换吸附和表面沉淀,对Cu~(2+)和Zn~(2+)的去除则既有离子交换吸附和表面沉淀作用,又有化学沉淀作用。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

16.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

19.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号