首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L-1,实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

2.
在2个相同的USB反应器(R1无载体,R2采用多孔生物填料为载体)中构建了短程反硝化工艺,对R1和R2NO3--N→NO2--N转化性能、短程反硝化颗粒污泥物化特性、胞外聚合物(EPS)产生特性以及微生物功能菌群主要特征进行差异分析.结果表明,反应器运行81d,氮负荷(NLR)为1.2kg/(m3·d)时,NO3--N→NO2--N转化率(NTR) R2(85%)高于R1(80%);载体颗粒污泥(R2)沉降性能优于自固定化颗粒污泥(R1)且载体颗粒污泥(R2)更容易截留EPS,PN/PS值R1(1.29)>R2(1.15),污泥体积指数(SVI) R1(27.07mL/g MLSS)>R2(19.36mL/g MLSS);扫描电镜发现R1污泥表面聚集长杆菌,R2污泥表面聚集短杆菌和球菌,与R1相比R2颗粒污泥结构更加规则密实.微生物高通量测序结果表明,R2物种丰富度和多样性高于R1,变形菌门、拟杆菌门和绿弯菌门在短程反硝化系统中占主导地位,R1和R2主要NO2--N积累功能菌属均为Acinetobacter属(R1-59.18%、R2-46.04%)和Thauera属(R1-6.81%、R2-5.99%).  相似文献   

3.
周锋  刘勇弟  厉巍 《环境科学》2021,42(10):4864-4871
本研究以低碳氮比废水为基质,厌氧氨氧化污泥优配普通活性污泥为接种物,在新型气升式内循环反应器中培育同步短程硝化-厌氧氨氧化-短程反硝化颗粒污泥.结果表明,经过225 d的连续运行可培育成熟稳定的颗粒污泥,其总氮去除率高达91.4%.相较于絮状污泥,颗粒污泥中厌氧氨氧化活性显著增加,并且厌氧氨氧化活性在4个脱氮过程中活性最大,其次是短程硝化,且短程反硝化比活性是亚硝酸盐还原比活性的2.1倍.高通量测序结果表明,颗粒污泥中短程硝化和厌氧氨氧化的优势菌分别为NitrosomonasCandidatus_Brocadia,并相较于絮状污泥,它们的丰度分别增加至0.70%和0.57%.Thauera可能是颗粒污泥中潜在的短程反硝化优势菌,其丰度达到0.26%.RT-qPCR分析结果表明,相比接种阶段,短程硝化的功能基因amoAhao转录水平分别增加了3.5和1.5倍,厌氧氨氧化功能基因hzsA转录水平增加了2.1倍,短程反硝化过程中napAnarG转录水平增加的倍数之和是nirKnirS的倍数之和的4.8倍.本研究结果将为处理低碳氮比废水提供新的思路.  相似文献   

4.
接种普通活性污泥,以乙酸盐为碳源,控制进水COD/P为150∶1,在A/O SBR反应器内富集培养了聚糖菌;采用逐渐提高SBR厌氧末硝酸盐投加浓度的方法,将聚糖菌驯化诱导为反硝化聚糖菌结果.SBR厌氧末排水中COD与缺氧末排水基本相同,COD平均去除率达到86.74%,总氮去除率达到98%以上.然后缩短SBR的厌氧及缺...  相似文献   

5.
该文采用循环式活性污泥法(CAST)反应器,结合运行参数调控,考察了不同接种物对低碳氮比(C/N)生活污水短程硝化反硝化启动的影响。结果表明,在低温(9~13℃)、较高的溶解氧(DO 3.0~4.0 mg/L)条件下,接种常规活性污泥难以实现短程硝化反硝化。接种氨氧化菌剂,并调整DO(0.5~1.5 mg/L)、p H(8.0±0.1),第4天亚硝氮积累率达到96.69%,实现短程硝化;受进水低COD值影响,反硝化细菌难以快速繁殖,反硝化效果差,TN去除率仅为16.61%。接种反硝化菌剂,控制DO 0.5~1.5 mg/L、pH 7.8,第14天,亚硝氮积累率为88.49%,成功实现短程硝化反硝化;此外,生活污水进水波动较大,通过添加组合填料可有效提高CAST系统的抗冲击性能。该研究可为低C/N比生活污水短程硝化反硝化过程的快速启动提供参考。  相似文献   

6.
由于渗沥液处理出水标准逐步提高,同时增加了总氮标准,使得一级A/O技术很难达到出水要求。本文作者结合工作条件,充分利用渗沥液水质特点,通过调整生化系统的运行参数,在硝化和反硝化菌及厌氧氨氧化菌共存的情况下[1],将生化反应控制到短程硝化阶段。通过试验,可实现COD去除率90%,氨氮去除率95%以上,总氮去除率大大提高。由于受较多不可控因素影响,暂不能实现氨氧化细菌的稳定繁殖。  相似文献   

7.
低温SNAD颗粒污泥工艺启动方式   总被引:1,自引:1,他引:0  
为研究启动方式对同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺的影响,低温(12.7~18.3℃)条件下,R1和R2反应器分别通过先启动全程自养脱氮(CANON)工艺和先启动厌氧氨氧化耦合反硝化(SAD)工艺的方式逐步启动SNAD颗粒污泥工艺.结果表明,R1反应器启动成功后,氨氮几乎完全去除,总氮去除率达到86.7%.低氨氮浓度运行时,出水总氮去除率下降至75.3%,出水总氮浓度在10 mg·L~(-1)左右,NOB存在过量增殖现象,出水总氮浓度超过北京市水污染物排放标准一级A规定.R2反应器启动成功后,出水几乎不含氨氮,总氮去除率在89.1%左右,略高于R1反应器.低氨氮浓度运行时,出水氨氮浓度小于1.0 mg·L~(-1),出水总氮浓度小于6 mg·L~(-1),出水氨氮和总氮浓度满足地标一级A标准.先启动SAD工艺可以在启动初期通过厌氧运行将NOB逐渐淘汰出系统内,维持了系统的稳定性,为后续曝气启动SNAD工艺提供了良好的基础,维持了反应器的稳定运行,实现出水总氮长期排放达标.  相似文献   

8.
周倩  张林  唐溪  唐崇俭 《中国环境科学》2021,41(12):5673-5679
采用序批式生物反应器(SBR),以厌氧-好氧-缺氧的运行方式,研究了低C/N比下内碳源驱动的短程硝化反硝化工艺运行性能.结果表明,反应器内可同时富集反硝化聚糖菌(DGAOs)和氨氧化细菌(AOB).DGAOs可以利用聚-β-羟基脂肪酸酯(PHA)为内碳源进行反硝化,且利用的PHA中PHB(聚-β-羟基丁酸酯)占主要部分...  相似文献   

9.
ANAMMOX菌铁自养反硝化工艺的稳定性   总被引:1,自引:0,他引:1  
张文静  黄勇  毕贞  胡羽婷  董石语 《环境科学》2019,40(7):3201-3207
在非严格厌氧的连续流反应器中,通过调节进水pH、外加一定浓度的Fe~(2+)以及定期更换新鲜铁粉这3种运行方式探讨维持厌氧氨氧化(ANAMMOX)菌利用零价铁去除硝酸盐反应体系长期稳定运行的适宜条件.结果表明,随着反应进行、受零价铁表面钝化的影响,该体系硝酸盐去除率逐渐下降,反应器难以持续运行.在一定范围内降低进水pH(5~7),或者额外投加一定量的Fe~(2+)对改善该反应体系的稳定性效果不显著.通过定期更换新鲜铁粉的方式,可以有效提高硝酸盐去除率、增强反应器稳定性.相比对照组可稳定运行7 d,实验组可至少稳定运行60 d,硝酸盐平均去除率提高22. 23%.因此,采取适宜措施保证体系内有足够具有活性的零价铁、消除零价铁钝化的不利影响,是ANAMMOX菌利用零价铁去除硝酸盐反应体系高效、稳定运行的关键.  相似文献   

10.
《环境科学与技术》2021,44(4):54-63
短程反硝化-厌氧氨氧化工艺因无须曝气,节省碳源,理论上可实现100%氮去除,成为近年来最具应用前景的新型污水生物脱氮技术。短程反硝化(NO_3~--N→NO_2~--N)又可分为胞外碳源(即外源短程反硝化,或短程反硝化)和胞内碳源(即内源短程反硝化)2种电子供体驱动类型,但目前鲜有研究对2种新型短程反硝化及其耦合厌氧氨氧化的专题报道。文章首先对比了短程反硝化和内源短程反硝化工艺原理;其次从反应时间、COD/NO_3~--N比、碳源类型、温度和溶解氧等5个方面总结了2种工艺的影响因素;随后对国内外基于短程反硝化/内源短程反硝化耦合厌氧氨氧化的研究进展进行综述;最后结合当前的研究现状提出目前急需解决的问题并展望了短程反硝化/内源短程反硝化耦合厌氧氨氧化技术的发展方向。  相似文献   

11.
为获得快速启动厌氧氨氧化的最佳污泥源及厌氧氨氧化颗粒污泥的快速形成工艺,采用本实验室自主研发复合型CAMBR反应器(厌氧折流板反应器(ABR)+膜生物反应器(MBR),分别接种厌氧颗粒污泥(R1)和絮状反硝化污泥(R2),考察不同接种污泥的厌氧氨氧化启动特征和颗粒化程度.结果表明,R1与R2反应器分别耗时45 d和60 d均成功快速启动厌氧氨氧化,其启动过程均可分为活性停滞期、活性提高期、活性稳定期3个阶段,但每个阶段氮素的去除规律略有不同,稳定运行期内,R1和R2反应器内NH_4~+-N和NO-2-N的平均去除率均高达95%以上;此外,R1反应器中形成了直径0.8~1.6mm为主的厌氧氨氧化红色颗粒污泥,R2反应器则以不规则块状和絮状为主,颗粒化程度较低,两个反应器内均可观察到红色颗粒污泥上浮现象;稳定运行期内NH_4~+-N、NO-2-N和NO_3~--N之间的定量关系分析表明:R1反应器内可能存在着硝酸盐型厌氧氨氧化,致使NH_4~+-N过量转化,R2反应器内则为典型亚硝酸盐型厌氧氨氧化.  相似文献   

12.
接种单一/混合污泥对厌氧氨氧化反应器快速启动的影响   总被引:1,自引:0,他引:1  
张泽文  李冬  张杰  郭跃洲  李帅 《环境科学》2017,38(12):5215-5221
在两组SBR反应器R0、R1中分别接种单一类型反硝化颗粒污泥和反硝化颗粒污泥与好氧硝化污泥的混合污泥(体积比为2∶1)来启动厌氧氨氧化,旨在探求不同接种污泥对厌氧氨氧化反应器快速启动的影响.结果表明,R0用时64 d成功启动厌氧氨氧化,总氮去除负荷为0.26 kg·(m~3·d)~(-1),R1用时47 d,总氮去除负荷为0.30 kg·(m~3·d)~(-1),比R0缩短了17 d;在富集培养阶段,R1中红色污泥大量出现,系统厌氧氨氧化特征比R0更加明显;反应器启动成功后,R0的化学计量比为1.20和0.34,R1的化学计量比为1.26和0.21,比R0更接近理论值1.32和0.26,R0中污泥的MLSS和MLVSS分别恢复到初始种泥的51%(4.2 g·L~(-1))和38%(2.3 g·L~(-1)),R1中污泥的MLSS和MLVSS分别恢复到初始种泥的54%(4.4 g·L~(-1))和42%(2.6 g·L~(-1)),高于R0,可以推测,R1驯化过程中厌氧氨氧化菌(AnAOB)增殖速率比R0更快.采用混合污泥作为接种污泥能够加速厌氧氨氧化的启动进程,且启动成功之后系统的脱氮性能更加稳定.  相似文献   

13.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

14.
本研究以模拟城市污水和高硝酸盐废水为处理对象,在一个厌氧-缺氧-微曝气运行的SBR反应器内,将短程反硝化工艺(PD,NO3-→NO2--N)与反硝化除磷工艺(DPR)耦合,并通过联合调控进水C/N比、厌氧排水率和缺氧时间,考察了PD-DPR系统的亚硝酸盐积累特性和除磷性能.结果表明,经过140d,NO3-→NO2--N转化率(NTR)为80.1%,PO3-4-P去除率高达97.64%.在厌氧段(180 min),聚糖菌(GAOs)和聚磷菌(PAOs)对污水有机碳源进行充分利用,将其转化为内碳源;缺氧段(150 min),反硝化聚糖菌(DGAOs)和异养反硝化菌(DOHOs)分别进行内源和外源短程反硝化实现NO-2-N稳定积累,同时反硝化聚磷菌(DPAOs)进行高效反硝化吸磷;微曝气段(10 min),在不发生硝化反应的前提下,...  相似文献   

15.
不同种泥的厌氧氨氧化反应器的启动及动力学特征   总被引:1,自引:2,他引:1  
采用2套UBF反应器R1和R~2,R1接种好氧硝化污泥与厌氧氨氧化-反硝化污泥的混合污泥,R~2接种厌氧消化絮状污泥与厌氧氨氧化-反硝化污泥的混合污泥,采用逐渐提高进水亚硝氮和氨氮浓度的方式富集培养ANAMMOX菌.结果表明,R1启动时间短,仅耗时36 d就成功启动了厌氧氨氧化反应器,而R~2则需要53 d; R1和R~2脱氮效果均较好,但R1脱氮效果优于R~2且稳定.在稳定运行阶段,R1氨氮、亚硝氮和总氮去除率分别为99. 92%、96. 64%和81. 87%左右,R~2氨氮、亚硝氮和总氮去除率分别为97. 54%、94. 91%和80. 98%左右.反应器启动成功后,Candidatus Kuenenia属在所检测出的属中丰度位列前六,在R1和R~2中的相对丰度分别为3. 22%和2. 35%;改进的Stover-Kincannon基质去除模型和二级动力学模型对拟稳态阶段R1和R~2的脱氮性能均能进行较好地拟合,经计算,R1的最大基质去除速率Umax稍大于R~2,说明R1的脱氮潜力较大.  相似文献   

16.
为实现厌氧氨氧化颗粒污泥(ANAMMOX granular sludge,AGS)的快速培养,采用上流式厌氧污泥床(up-flow anaerobic sludge bed,UASB)工艺,在添加少量絮状厌氧氨氧化污泥(flocculent ANAMMOX sludge,FAS)的反应器内填充生物流离球作为填料,对ANAMMOX的启动及FAS的颗粒化进行研究.同时利用Haldane模型研究AGS的基质抑制动力学特性.结果表明,利用生物流离球作为填料,实现了ANAMMOX的启动,总氮去除率达85%以上,总氮容积负荷为0. 72 kg·(m3·d)-1,并在127 d内成功培养出直径1. 0~3. 0 mm的AGS.动力学研究表明,反应器内AGS对氨和亚硝酸盐的最大反应速率分别为1. 46 kg·(kg·d)-1和1. 76 kg·(kg·d)-1,半抑制速率分别是852. 2 mmol·L-1和108. 2 mmol·L-1.与絮状污泥相比,AGS能承受更高的氨和亚硝酸盐抑制浓度,并保持较高的反应速率.采用含有海绵的生物流离球作为填料,能有效加速反应器的启动,加快AGS的形成,对厌氧氨氧化工艺的实际运行具有积极的意义.  相似文献   

17.
采用连续搅拌釜式反应器(CSTR)成功启动了餐厨垃圾与剩余污泥混合发酵平行系统,重点探究了不同污泥停留时间(SRT)缩减幅度对于餐厨垃圾和剩余污泥混合发酵系统的影响.结果表明,较大幅度地缩减SRT( 8. 3 d)提升反应器运行负荷,不利于反应器的稳定运行;随着反应器运行负荷的增加,SRT缩减幅度应逐渐降低(5~0. 9 d),能够取得餐厨垃圾和剩余污泥混合发酵系统的高负荷稳定运行.经过282 d的运行,CSTR混合发酵系统能够在SRT为9. 1 d,进料负荷(以COD计)为(12. 9±1. 5) g·(L·d)~(-1)的条件下稳定运行,相应的甲烷产量为3. 94~4. 25 L·(L·d)~(-1),甲烷产率(以COD计)为288~302 m L·g-1,p H和挥发性脂肪酸(VFA,以COD计)分别稳定在7. 80~7. 83和0. 32~0. 39 g·L-1.此外,还探究了高负荷条件下餐厨垃圾和剩余污泥混合发酵污泥特性,结果表明,餐厨垃圾和剩余污泥混合发酵系统甲烷转化途径以乙酸转化途径为主,具有较高的乙酸、丙酸、丁酸和戊酸的产甲烷活性和辅酶F420的质量摩尔浓度.  相似文献   

18.
钟红春  周少奇  胡永春 《环境科学》2007,28(11):2473-2477
通过温度和进水控制对UASB-ANAMMOX反应器内的ANAMMOX菌的反应活性进行充分抑制后,采用垃圾渗滤液配水来进行二次启动.结果表明,二次启动的时间相对较快,在第21 d的 NH4-N的去除率就可以达到96 .17%,NO--N的去除率达到86 .77%;由于反硝化的协同作用降低使得COD的去除率有下降的趋势,平均去除量只有60 mg/L; 反应启动过程中的平均三氮比即去除的NH4-N∶去除的NO--N∶生成的NO--N=1∶0 .75∶0 .26; 反应成功进行二次启动后的平均三氮比即去除的NH4-N∶去除的NO--N∶生成的NO--N=1∶0 .95∶0 .26,三氮比中的亚硝氮去除比率较大幅度上升.  相似文献   

19.
采用ASBR(530 L)接种A~2/O厌氧污泥,考察了厌氧氨氧化(ANAMMOX)的启动及其与反硝化耦合处理含盐废水的脱氮特性,并对菌群结构进行了分析.结果表明,温度35℃±1℃、反应时间为14 h,160 d可实现ANAMMOX的成功启动.稳定运行阶段,ANAMMOX与反硝化耦合(SAD)使得总氮(TN)去除率和去除负荷分别达91.1%和0.45 kg·(m~3·d)~(-1);污泥呈浅红色颗粒状,厌氧氨氧化菌为优势菌,且主要菌属为Candidatus Brocadia(10.6%).此外,采用按梯度逐步提高盐度的驯化方式,可实现SAD对高盐(Cl-浓度8 000 mg·L-1)模拟火电厂废水的高效脱氮除碳,COD和TN去除率分别达93.2%和90.0%.推测SAD中反硝化主要为NO_3~--N→N_2,部分反硝化(NO_3~--N→NO_2~--N)仅占30.3%.  相似文献   

20.
快速启动厌氧氨氧化工艺   总被引:2,自引:13,他引:2  
闾刚  徐乐中  沈耀良  吴鹏  张婷  程朝阳 《环境科学》2017,38(3):1116-1121
为研究如何获得厌氧氨氧化的快速启动工艺,采用两种不同水力流态反应器:完全混合式膜生物反应器(MBR)和推流式厌氧折流板反应器(ABR),分别接种絮状硝化污泥,考察其厌氧氨氧化快速启动性能.结果表明:两种反应器均能成功启动厌氧氨氧化,MBR启动周期(90 d)比ABR(111 d)缩短20%;稳定运行期内,MBR总氮(NH_4~+-N+NO_2~--N)平均去除负荷[0.098 kg·(m3·d)-1]也明显高于ABR[0.089 kg·(m3·d)-1];此外,两个反应器中污泥形态差异明显,MBR中污泥呈絮状,而ABR第1隔室中以厌氧氨氧化颗粒污泥为主;NH_4~+-N、NO_2~--N和NO_3~--N之间的定量关系分析表明:相较于ABR,MBR能实现完全的生物截留,使得系统内含有更多种类的脱氮功能菌,有利于氮素的去除.MBR在厌氧氨氧化的快速启动方面表现出更明显的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号