首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征   总被引:2,自引:0,他引:2  
贺惠  甄毓  米铁柱  张玉  付璐璐  于志刚 《环境科学》2015,36(11):4068-4073
氮素循环是海洋生态系统物质循环的重要组成部分,对维持海洋生态平衡具有重要意义.由好氧氨氧化微生物(aerobic ammonia-oxidizing microorganism,AOM)推动的氨氧化过程是硝化作用的限速步骤.本研究通过荧光定量PCR技术,并结合潜在硝化速率(potential nitrification rates,PNR)的测定,研究了2014年8月乳山湾邻近海域沉积物中好氧氨氧化微生物种群分布特征.结果表明,3个采样站位中氨氧化细菌(ammonia-oxidizing bacteria,AOB)amo A拷贝数均高于氨氧化古菌(ammonia-oxidizing archaea,AOA);活性AOB占总AOB的比值低于1%,而活性AOA未检出;添加可抑制AOB活性的氨苄青霉素后,潜在硝化速率显著降低(P0.05).由此可知,AOB在8月乳山湾邻近海域沉积物氨氧化过程中发挥了重要作用.溶解氧浓度、温度及铵盐浓度对乳山湾邻近海域沉积物中好氧氨氧化微生物的种群丰度起着重要的调控作用.  相似文献   

2.
为了探究梯级水库开发对河流沉积物中氮循环微生物的影响,本文针对澜沧江流域氨氧化细菌(AOB)、氨氧化古菌(AOA)和nirS型反硝化微生物丰度进行了研究,采集了云南省盐井至橄榄坝19个点位的沉积物样品,测定了研究区域内自然河流、水库河段、重要支流的AOB-amoA、AOA-amoA和nirS基因的丰度,同时测定了沉积物、间隙水及水体理化因子.结果显示:19个点位沉积物AOB-amoA基因丰度范围为0.82×107~4.25×107copies/g,AOA-amoA基因丰度范围为0.83×107~6.87×107copies/g,nirS基因丰度范围为0.72×107~7.32×107copies/g;AOA/AOB介于0.35~2.17之间,AOA在数量上相比于AOB并不占优势.AOA-amoA、AOB-amoA和nirS丰度在自然河段、水库段和支流没有显著差异,说明人工水利设施的建设对氨氧化微生物丰度空间分布并无显著影响.沉积物间隙水氨氮、总磷和总氮是影...  相似文献   

3.
采用实时荧光定量PCR(qPCR)技术,测定了武汉东湖沉积物中氨氧化古菌(AOA)和氨氧化细菌(AOB)氨单加氧酶基因(amoA)的丰度,并结合沉积物水体环境中各形态氮素的含量,分析氮素含量对AOA和AOB的时空分布的影响.结果显示,AOA amoA基因丰度大于AOB amoA基因丰度,表明AOA对氨氧化过程的贡献较大...  相似文献   

4.
采用定量PCR方法测定了4个湖泊沉积物中氨氧化微生物的amoA基因数量,并分析了其与环境因子之间的关系. 结果表明:小南湖AOA(氨氧化古菌)和AOB(氨氧化细菌)的amoA基因数量最多,分别达2.1×104和2.8×103copies/g(以干质量计,下同);梁子湖仅检测到了AOA amoA基因的存在,平均值为4.9×103copies/g. 东湖和汤逊湖的AOA amoA基因数量比较接近,约为3.0×103copies/g,然而AOB的amoA基因数量在这2个湖泊中仅分别为37和86copies/g;在这些采样点中,AOA的amoA基因数量是AOB的3~278倍. 统计分析发现,随着湖泊营养水平和间隙水中ρ(NH4+)的上升,AOA和AOB的amoA基因数量均呈增加趋势,但ρ(NH4+)增加对AOB的促进作用要大于AOA,导致AOA和AOB的amoA基因数量比值与间隙水中ρ(NH4+)呈显著负相关. pH上升对2类氨氧化微生物的抑制作用则与ρ(NH4+)增加对它们的促进作用相反. 沉积物中amoA基因数量与间隙水中ρ(NO2-)无显著相关性,但与ρ(NO3-)呈显著正相关. 由于ρ(NH4+)与ρ(DO)之间呈显著负相关,因此认为ρ(DO)与氨氧化微生物amoA基因数量之间的显著负相关可能更多的是对ρ(NH4+)与氨氧化微生物amoA基因数量之间紧密关系的一种间接反应.   相似文献   

5.
异养硝化、厌氧氨氧化及古菌氨氧化与新的氮循环   总被引:6,自引:1,他引:6  
自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,旨在为今后人们重新认识和构建新的氮循环提供有用信息,并对这些新型微生物今后在污水生物脱氨处理中的应用提出了一些展望和设想.指出今后在污水生物处理系统中,可通过富集异养硝化菌强化同步硝化反硝化、富集厌氧氨氧化菌实现单级自养脱氟、富集氨氧化古菌提高低溶解氧下的脱氮效率.  相似文献   

6.
氧化亚氮(N2O)是一种重要的痕量温室气体,而且在光照条件下平流层的N2O会与O3发生光化学反应,破坏臭氧层。海洋是大气中N2O的主要来源之一,海洋中N2O主要通过硝化和反硝化作用产生,而氨氧化作用是硝化作用的关键(限速)步骤,氨氧化古菌可能是氨氧化过程的主要执行者。本文先概述海洋中N2O分布以及影响氨氧化古菌(Ammonia oxidizing archaea,AOA)和氨氧化细菌(Ammonia oxidizing bacteria,AOB)的amoA(ammonia monooxygenase)丰度与活性的因素以及N2O生成机制研究现状,进而总结AOA和AOB在海洋N2O生成机制中起到的关键作用,最后结合全球气候变化、海洋酸化以及大洋OMZ区域扩大等前沿科学问题,对AOA、AOB以及N2O的生成机制研究进行了展望。  相似文献   

7.
溶氧(dissolved oxygen,DO)是影响氨氧化过程的一个重要环境因素.为探究DO对氨氧化过程的影响程度及其作用机制,本研究对驯化培养河口湿地表层沉积物所得到的氨氧化菌富集培养物进行DO处理实验,利用PCR-DGGE分子指纹图谱技术比较不同DO条件下氨氧化菌多样性,确定DO对氨氧化速率、氨氧化菌多样性的影响规律.结果表明,在饱和及好氧条件下氨氧化细菌(ammonia-oxidizing bacteria,AOB)群落多样性指数(Shannon index)达到2.00和2.05,氨氧化古菌(ammonia-oxidizing archaea,AOA)为2.49和2.03,氨氧化速率分别达到14.20 mg·(L·d)-1和13.36 mg·(L·d)-1,NH4+-N转化率达到93.8%和88.2%.而在缺氧和厌氧条件下AOB群落多样性指数分别为1.76和1.80,AOA为1.27和2.21,氨氧化速率仅为7.82 mg·(L·d)-1和5.66 mg·(L·d)-1,NH4+-N转化率为51.7%和37.4%.相关性分析结果表明,DO浓度与氨氧化速率呈极显著正相关,与AOB多样性指数亦呈显著正相关;DO和氨氧化速率与AOA群落各指数都无相关关系.  相似文献   

8.
巢湖十五里河河床地貌单元沉积物硝化速率及污染特征   总被引:1,自引:1,他引:1  
2017年7月~2018年3月,在巢湖流域十五里河城市段河床地貌特征丰富的两处河段,就深潭、浅滩、砾石滩、点砂坝和常规流水区等5种地貌单元类型,按季节采集表层沉积物样和水样,解析不同地貌单元沉积物硝化速率及其变化性,并开展不同地貌单元硝化速率的差异性和影响因素分析.结果表明:(1)十五里河中上游河段氮磷污染严重,且水体氧化还原电位(ORP)值基本都低于零,表明河水处于显著的还原状态.(2)5种地貌单元沉积物的PNR变化范围为0.002~0.079μmol·(g·h)-1,均值为0.023μmol·(g·h)-1,高低排序依次为:深潭点砂坝浅滩砾石滩流水区,相应的季节变化规律基本表现为:夏季春季秋季冬季.(3)5种地貌单元表层沉积物ANR变幅为0.140~13.543μmol·(m2·h)-1,均值为3.658μmol·(m2·h)-1,总体表现为浅滩最高,常规流水区次之,砾石滩和点砂坝大体相当,深潭最小,且季节变化规律与PNR相似.(4)差异性分析表明,深潭、浅滩与其他4种地貌PNR均存在显著差异性,超过半数的地貌单元ANR呈极显著差异性.(5)回归分析表明,5种地貌单元的PNR、ANR与上覆水水质指标的相关性相对较强,而与沉积物理化指标的相关性略弱.  相似文献   

9.
浙江省瓯江氨氧化古菌和氨氧化细菌分布及多样性特征   总被引:1,自引:5,他引:1  
李虎  黄福义  苏建强  洪有为  俞慎 《环境科学》2015,36(12):4659-4666
氨氧化古菌(ammonia-oxidizing archaea,AOA)和氨氧化细菌(ammonia-oxidizing bacteria,AOB)在生物地球化学氮循环过程中发挥着重要作用.河流是关系人类生产和生活的重要生态系统,蕴含大量氮循环功能微生物.本研究采用变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)和荧光定量PCR(quantitative PCR,q PCR)技术对沉积物AOA、AOB群落进行结构和丰度分析,在瓯江感潮河段尺度上探究AOA、AOB分布规律及影响AOA、AOB群落结构与丰度的因素.结果表明,AOA群落结构差异不显著,影响其分布的主要因素为NH+4和TS;AOB群落结构存在显著差异,序列分析比对表明AOB分为Nitrosospira和Nitrosomonas,其中90%序列为Nitrosospira,EC、p H、NH_4~+、NO_3~-、TC和TN是影响AOB群落组成的重要环境因素;总硫(TS)和电导率(EC)分别是影响AOA和AOB多样性的主要因素;AOA丰度显著高于AOB;EC、NH_4~+-N和NO_3~--N是影响AOA和AOB丰度的主要环境因素.研究表明,瓯江感潮河段沉积物中AOA和AOB群落结构和丰度均显著受环境因素影响,AOA在表层沉积物氨氧化过程中可能占主导位置.  相似文献   

10.
吕玉  周龙  龙光强  汤利 《环境科学》2016,37(8):3229-3236
利用荧光定量PCR(real-time quantitative PCR,Q-PCR)技术,结合氨氧化细菌(ammonia oxidizing bacteria,AOB)和氨氧化古菌(ammonia oxidizing archaea,AOA)丰度和土壤理化性质的测定,探索了不同氮水平下间作对玉米土壤硝化势(PNF)的影响.试验设置玉米单作和与马铃薯间作两个种植模式,4个施氮水平(不施氮N0、1/2常规施氮N1、常规施氮N2和3/2常规施氮N3)的随机区组试验.结果表明,从不施氮到常规施氮,土壤硝化势和AOA、AOB数量均随施氮量增加而逐渐增加,而高氮(N3)时与N2没有显著差异;间作对土壤硝化势、AOA与AOB数量的影响与施氮量和作物生育期有关,低氮投入(N1)间作有利于增加土壤氨氧化微生物数量和硝化作用.施肥是硝化势增加的主要驱动因子,相关性分析结果表明,土壤含水量是影响PNF的主要环境因子;PNF与土壤中AOA、AOB amoA基因丰度成显著的正相关.尽管玉米马铃薯间作降低了土壤中AOA、AOB amoA基因丰度,却使得间作土壤中AOB占据氨氧化微生物数量上的优势.以上结果表明,施氮和间作均影响了土壤硝化作用和氨氧化微生物AOA和AOB数量的变化,这些变化会影响土壤环境质量.  相似文献   

11.
为深入认识河流NH4+-N的转化降解过程,以生物量、温度和c(NH4+-N)这3项因子为对象,开展河流底泥潜在硝化速率模型研究.采集典型污染河流底泥样品,设置3个生物量梯度(高、中、低)、5个c(NH4+-N)梯度(0.13、0.63、1.13、2.13、4.13 mmol/L)、4个温度梯度(15、20、30、40℃),测定不同条件下河流底泥潜在硝化速率,并进一步构建了潜在硝化速率模型,定量分析了生物量、温度和c(NH4+-N)对潜在硝化速率的影响.结果表明:①生物量对底泥的潜在硝化速率有显著影响,高、中、低生物量条件下,河流底泥潜在硝化速率范围分别为0.10~0.26、0.03~0.16和0.02~0.07 μmol/h.②底泥潜在硝化速率随温度呈现指数增长,但高温具有抑制作用,各温度梯度下k(硝化速率常数)分别为5.9、9.3、18.1、10.6 μmol/(g·h),15~30℃范围内θ(温度校正系数)为1.074.③c(NH4+-N)对潜在硝化速率的限制作用符合Monod方程,高、中、低生物量条件下Ks(半饱和浓度)的平均值分别为0.02、0.05、0.13 mmol/L.研究显示,潜在硝化速率模型较好反映了生物量、温度和c(NH4+-N)对河流底泥潜在硝化速率的影响,为定量认识底泥硝化能力提供了有效手段.   相似文献   

12.
以低温域(0~15 ℃)下黄菖蒲(Iris pseudacorus)、菖蒲(Acorus calamus)和香蒲(Typha orientalis)3种湿地植物为研究对象,分别取其根际土壤测定硝化强度,并采用FISH(荧光原位杂交)技术,考察植物根际AOB(氨氧化细菌)、AOA(氨氧化古菌)的数量变化规律. 结果表明:低温条件下,香蒲根际土壤的硝化强度最高,平均值为1.40 mg/(kg·h),黄菖蒲和菖蒲的平均值均为0.96 mg/(kg·h). 湿地植物根际土壤中的细菌数量(数量级为1010)远高于古菌(数量级为108),其中AOB为优势菌种,3种湿地植物的AOA数量分别约占总古菌数量的46.0%、47.9%和49.7%. 3种湿地植物根际AOB的数量(以湿土计,下同)排序为香蒲(2.57×109 g-1)>黄菖蒲(1.23×109 g-1)≈菖蒲(1.14×109 g-1),AOA的数量(以湿土计)排序为黄菖蒲(2.78×108 g-1)>香蒲(2.57×108 g-1)>菖蒲(1.15×108 g-1). 微生物分布特性和硝化作用效果均表明,不同植物根际氨氧化过程的主要作用微生物具有一定差异,AOA和AOB对于湿地土壤氮转化均具有不可忽视的作用,并与植物本体、土壤硝化过程微环境之间有一定的耦合关系.   相似文献   

13.
土地利用变化对土壤硝化及氨氧化细菌区系的影响   总被引:3,自引:0,他引:3  
杨莉琳  毛任钊  刘俊杰  刘小京 《环境科学》2011,32(11):3455-3460
以西藏高原相邻的原始森林、天然草原和农田土壤为研究对象,分别采用室内培养法和nested PCR-DGGE技术,对比研究了这3个生态系统的土壤硝化势、硝态氮浓度以及土壤氨氧化细菌(AOB)菌群区系.结果表明,农田土壤的硝化势和硝态氮(NO 3--N)浓度显著高于相邻的草原和森林土壤,硝化势分别是森林和草原土壤的9倍和11倍,NO 3--N是农田土壤无机氮(Nmin)的主要成分,占无机氮的70%~90%.铵态氮(NH 4+-N)则是森林和草原土壤中主要的无机氮形态.原始森林和天然草原间的硝化势和硝态氮浓度没有显著差异.原始森林的土壤AOB菌群数量、多样性及均匀度最低.天然草原生态系统转换为农田后,土壤AOB菌群的多样性和均匀度显著降低,但是农田土壤的AOB菌群结构仍与其前身草原生态系统有较高的相似性.原始森林的AOB菌群数量、多样性及均匀度最低直接导致了其硝化势最低;农田土壤的硝化势和硝态氮浓度最高意味着农田生态系统中优势AOB的活性最高.以上结果表明,土地利用变化导致土壤氮素内循环及其关键微生物AOB的多样性与活性均发生显著变化,这些变化会影响土壤环境质量以及生态系统的持续与稳定.  相似文献   

14.
本研究基于amo A基因,结合实时荧光定量PCR(quantitative real-time PCR,q PCR)和高通量测序技术研究罗红霉素(roxithromycin,ROX)短期冲击对活性污泥中氨氧化古菌(ammonia-oxidizing archaea,AOA)和氨氧化细菌(ammonia-oxidizing bacteria,AOB)丰度和多样性的影响.本研究共设置10种ROX浓度,不同浓度的ROX对氨氧化作用的影响差异明显,环境浓度(0.3~30μg·L~(-1))与中等浓度(300μg·L~(-1)和3000μg·L~(-1))的ROX并未对氨氧化作用产生影响;较高浓度(5 000~12 000μg·L~(-1))的ROX对氨氧化作用产生明显的抑制作用.环境浓度和中等浓度的ROX刺激了AOA增长,而较高浓度的ROX导致AOA的丰度下降.此外,除了环境中的痕量浓度(0.3μg·L~(-1)),其余浓度的ROX均导致AOB丰度下降,且下降趋势比AOA显著,说明AOA对ROX的耐受性高于AOB.高通量测序结果表明,在ROX的选择压下,AOA的OTUs多样性减少,AOB的OTUs多样性增加;但3个样品中最主要的AOA Candidatus Nitrososphaera gargensis的相对丰度随ROX浓度增加而增多,最主要的AOB Nitrosomonas eutropha的相对丰度随ROX浓度增加而减少,这同样说明了AOA对ROX的耐受性高于AOB.冗余分析结果表明:AOA Ca.Nitrososphaera gargensis、Candidatus Nitrosoarchaeum koreensis和AOB Nitrosomonas oligotropha、Nitrosomonas watsonii、Nitrosomonas halophilus均与ROX浓度呈正相关.  相似文献   

15.
王雪  赵大勇  曾巾  余多慰  吴庆龙 《环境科学》2014,35(6):2314-2321
为研究不同生物量河蚬(Corbicula fluminea)的生物扰动对表层沉积物中氨氧化菌群落结构和丰度的影响,本研究设计了沉积物-水微宇宙的模拟体系,通过构建克隆文库、实时荧光定量PCR(real-time qPCR)等分子生物学方法比较不同密度河蚬扰动的沉积物中氨氧化古菌(ammonia-oxidizing archaea,AOA)和氨氧化细菌(ammonia-oxidizing bacteria,AOB)群落结构和丰度差异.结果表明,河蚬的生物扰动作用对表层沉积物氮素释放有明显的促进作用.氨氧化菌(AOA和AOB)amoA基因克隆文库中,AOA的amoA基因序列包含了已知的海洋和土壤环境中的两个分支,AOB的amoA基因绝大部分序列都属于变形菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas).3个处理组表层沉积物中细菌amoA基因丰度均高于古菌amoA基因丰度,且河蚬密度越高则细菌amoA的丰度越低.同时,河蚬的添加使得微宇宙体系中氨氧化菌(AOA和AOB)的多样性降低.综上,河蚬的生物扰动对表层沉积物中氨氧化菌群落结构和丰度产生了一定的影响.  相似文献   

16.
辽河口湿地沉积物硝化细菌及硝化作用研究   总被引:7,自引:2,他引:7  
白洁  陈春涛  赵阳国  田伟君  董晓  尹宁宁 《环境科学》2010,31(12):3011-3017
2009年6月和8月,采用现场培养和实验室模拟培养相结合的方法对辽河口湿地表层沉积物硝化细菌数量、硝化速率及影响因素进行了研究.结果表明,辽河口湿地表层沉积物氨氧化细菌(ammonia-oxidizing bacteria,AOB)数量6月在0.54×104~5.69×104个.g-1之间,平均值为(2.21±2.32)×104个.g-1,8月在1.90×104~7.90×104个.g-1之间,平均值为(3.61±2.87)×104个.g-1;沉积物潜在硝化速率6月在9.72~16.45 mmol.(m2.h)-1之间,平均值为(12.54±3.14)mmol.(m2.h)-1,8月在14.66~24.62 mmol.(m2.h)-1之间,平均值为(18.71±4.21)mmol.(m2.h)-1;净硝化作用速率6月(S1站)为0.41 mmol.(m2.h)-1,8月在0.20~0.53 mmol.(m2.h)-1之间,平均值为(0.35±0.16)mmol.(m2.h)-1.潜在硝化速率显著高于净硝化速率,AOB数量、净硝化作用速率和潜在硝化作用速率均表现为8月高于6月,芦苇根际效应对硝化作用有促进作用.通过SPSS 13.0软件统计分析,表明影响辽河口湿地表层沉积物硝化作用的主要环境因子有上覆水NH 4+-N浓度和沉积物pH、有机质、总氮(TN)、总磷(TP)、NH 4+-N含量以及AOB数量(p0.05),其中上覆水NH 4+-N浓度和沉积物总磷(TP)、NH 4+-N含量对硝化作用影响较大,是辽河口湿地硝化作用影响的关键因素.根据研究结果估算辽河口湿地沉积物硝化作用每天可以将1.14×105kg的NH 4+-N转化为NO 3--N,对河口湿地氮的循环具有重要意义.  相似文献   

17.
2015年5月~2016年7月,在合肥市城乡交错带3条溪流沟渠上,按季节采集表层沉积物样,分析沉积物的氮素污染特征,解析潜在硝化速率PNR、表面硝化速率ANR及反硝化速率的时空变化性,并以偏最小二乘回归分析法进行影响因子分析.结果表明:1关镇河支渠氮素污染最为严重,TN均值达4 516.39 mg·kg-1,分别为磨店小溪流和陶冲小溪流的2.56、1.36倍,NH_4~+-N和NO_3~--N含量也表现为关镇河支渠最高,磨店小溪流最低;2 3条溪流沟渠PNR和ANR几乎都表现为夏季最高,冬季最低,春、秋两季则大体相当,高低排序为陶冲小溪流磨店小溪流关镇河支渠;3关镇河支渠反硝化速率均值为10.59 mg·(kg·h)-1,分别为磨店小溪流和陶冲小溪流的3.16、1.75倍,3条溪流沟渠的反硝化速率和反硝化活性都表现为夏季高于春季;4根据参数FVIP,各溪流沟渠ANR、PNR和反硝化速率几乎都与沉积物的pH、OM、NH_4~+-N、NO_3~--N、TN、TP存在较为显著的相关关系,但不同溪流水体之间存在差异性.  相似文献   

18.
人为扰动背景下城市边缘溪流底质硝化-反硝化潜力分析   总被引:3,自引:1,他引:3  
李如忠  郑侠  高苏蒂  叶舟 《环境科学》2017,38(11):4598-4606
2016年5月至2017年1月,在合肥城区东北部边缘某一溪流的自然状态段(情形1)、点源排污段(情形2)和水土流失段(情形3)设置6个采样点位,逐月采集水样和表层底质样,解析不同情形下溪流底质硝化-反硝化潜力及其变化特征,并进行差异性和影响因素分析.结果表明:(1)溪流底质硝化活性均值为0.381%,并以情形2底质硝化活性最高,情形1的夏季硝化活性相对最强、冬季最弱,情形2、3硝化活性高低排序为:春季夏季秋季冬季;(2)溪流底质硝化速率均值为0.364mg·(kg·d)~(-1),其中以情形2底质硝化速率最高,情形2、3的各采样点春季硝化速率显著最高,其它季节相差不大,情形1的各季节变化不很明显;(3)溪流底质反硝化活性为37.25%,反硝化速率为57.68 mg·(kg·d)~(-1),其中情形2底质反硝化活性和反硝化速率都高于相同季节的其他情形,情形1、2的反硝化活性和反硝化速率高低排序均为:夏季春季秋季冬季,情形3的反硝化活性和反硝化速率排序均为:春季夏季秋季冬季;(4)差异性分析表明,情形1、2在硝化速率方面存在极显著差异性,情形1、3在反硝化活性、反硝化速率方面存在极显著差异性,而情形2、3在硝化速率、反硝化活性和反硝化速率方面均呈现极显著差异性;(5)偏最小二乘回归分析表明,3种情形在硝化活性和硝化速率方面重要贡献因素差异较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号