共查询到15条相似文献,搜索用时 62 毫秒
1.
为探究关中平原降水氢氧稳定同位素特征及其水汽来源,本研究选取关中腹地的杨凌站点次降水为研究对象,利用当地2015~2018年间的98场次降水样品及同期气象资料,分析该地区降水氢氧稳定同位素(δ~2H、δ~(18)O和δ~(17)O)组成特征及其影响因素,建立当地大气降水线和三氧同位素大气降水线方程,并利用δ~(18)O、d-excess和~(17)O-excess指标尝试探讨当地可能存在的降水水汽来源,定量描述海洋和内陆源水汽对区域降水的贡献.结果表明,杨凌地区降水氢氧稳定同位素存在明显的季节性变化,同位素组成雨季(5~10月)贫化,旱季(11月~次年4月)富集;当地大气降水线的斜率和截距分别为7.7和9.1,说明研究区降水受到一定程度的蒸发分馏影响;三氧同位素大气降水线斜率为0.528,介于海水平衡分馏斜率(0.529)与水汽扩散斜率(0.518)之间,表明研究区处于海洋气团向内陆干旱区迁移的路径上.综合分析δ~(18)O、d-excess和~(17)O-excess,发现研究区降水受到来自东南季风的暖湿气团和来自西风的干冷气团的共同贡献,其中约有55%~79%的降水水汽来源于海洋,主要集中于6~8月; 21%~45%的水汽来源于内陆和局地蒸发,主要集中于10月~次年4月. 5月和9月降水水汽来源复杂,可能受海洋水汽和内陆水汽的共同补给. 相似文献
2.
乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比 总被引:2,自引:3,他引:2
为了揭示季风边缘区降水中稳定同位素特征及水汽来源,利用2016年10月至2017年10月采集的97个降水样品,采用相关分析和HYSPLIT模型,对乌鞘岭南、北坡降水稳定同位素的特征、大气水线方程、温度和降水量效应、水汽来源进行了对比分析.结果表明,南坡大气降水线的斜率与截距低于全球大气水线(GMWL)和北坡大气降水线;南、北坡的同位素温度效应和季节效应明显,但北坡的温度效应比南坡更为明显;除北坡夏季和南坡降水量小于5 mm时降水稳定同位素表现出微弱的降水量效应,南、北坡其它季节或其它降水量级均无明显的降水量效应;来自西北和北方的水汽占90%以上,北坡受季风水汽影响极少,南坡夏季会受到东南季风影响,局地水汽再循环对乌鞘岭南、北坡水汽也有贡献.本研究可提高对高寒山区降水同位素演化的认知,为寒旱区同位素水文学的进一步研究奠定基础. 相似文献
3.
长江源区降水氢氧稳定同位素特征及水汽来源 总被引:2,自引:4,他引:2
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程. 相似文献
4.
滇南蒙自地区降水稳定同位素特征及其水汽来源 总被引:4,自引:5,他引:4
大气降水中δD、δ~(18)O值具有规律性变化特征,与诸多气象要素及水汽来源之间存在密切联系.根据2009年1月至2011年12月对滇南蒙自地区大气降水的连续性采样,结合欧洲中期数值预报中心(ECMWF)以及美国国家环境预报中心/美国国家大气研究中心(NCEP/NCAR)的再分析资料,并利用HYSPLIT_4.8后向轨迹追踪模型,分析了天气尺度下蒙自地区大气降水中δD、δ~(18)O的变化特征,探究了降水稳定同位素与温度、降水量、风速及水汽来源之间的关系.结果表明,蒙自地区降水中δD、δ~(18)O值表现出明显的季节变化,即干季偏高,湿季偏低;降水中δ~(18)O与温度、降水量之间存在显著负相关,但与不同气压层(300、500、700、800 h Pa)风速之间呈现出显著正相关,表明风速也是影响降水中δ~(18)O变化的一个重要因素;随着降雨等级的增加,其大气水线的斜率与截距也增大,说明降水稳定同位素存在一定程度的云底二次蒸发效应;水汽输送轨迹显示,干季降水的水汽主要来自于西风带输送及局地再蒸发水汽,而湿季降水的水汽主要来源于远源海洋水汽的输送,并且在受台风影响期间,降水中δD、δ~(18)O值更加偏负. 相似文献
5.
综合分析西北内陆区97个研究站点的降水稳定同位素数据,并结合相关气象资料,揭示了西北内陆区降水稳定同位素δ18O、δD和d-excess时空分布特征,明确了海拔、经纬度、温度和降雨量对降水δ18O的影响;利用水汽通量和HYSPLIT模型追踪了大气降水的水汽来源.同时,根据关键自然地理要素的空间差异将西北内陆区划分为4个子区域,对上述内容分区域进行系统分析和对比.结果表明:(1)西北内陆区降水δ18O和δD的变化范围分别为-21.20‰~1.70‰和-144.20‰~5.21‰,d-excess波动范围为-20.37‰~46.48‰,δ18O、δD和d-excess均存在显著的空间变化和季节变化特征,河西内陆区和塔里木地区δ18O和δD值相对偏正,柴达木-青海湖区和准噶尔-吐哈地区δ18O和δD偏负.(2)西北内陆区大气降水线方程的斜率和截距均小于中国和全球大气降水线,4个子区域亦低于全球水线,其中塔里木地区斜率最低.(3)西北内陆区海拔效应为-0.04‰·... 相似文献
6.
厦门地区大气降水氢氧同位素组成特征及水汽来源探讨 总被引:7,自引:0,他引:7
采集厦门地区6个站位春、夏和冬季的大气降水样品,并用稳定同位素质谱仪分析降水样品中的氢氧同位素值(δD和δ18O).结果表明:厦门地区大气降水中δD和δ18O值春季最高(-7.86‰±8.07‰和-2.18‰±0.80‰),夏季最低(-61.17‰±4.85‰和-8.42‰±0.62‰).本文同时利用HYSPLIT模型对不同季节厦门地区水汽来源及输送路径进行追踪,发现厦门地区夏季降水主要受到来自南海及西太平洋气团的影响,期间降水量大,δD和δ18O值较低.厦门地区大气降水线方程为δD=8.35δ18O+12.52(R2=0.906),与全球降水线方程(δD=8.17δ18O+10.56)相比,截距及斜率略有偏高.厦门地区氘剩余值(d值)波动范围较大(-5.13‰~32.25‰),说明厦门地区降水的水汽来源较为多样,降雨条件较为复杂.厦门地区降水中d值表现为冬季高,春季次之,夏季低的季节性变化特征.年尺度下,厦门地区氢氧同位素与降水量在呈显著的负相关关系(r分别为-0.477和-0.369,p0.01). 相似文献
7.
《环境科学与技术》2017,(4)
利用全球降水同位素观测网(GNIP)所提供的数据,研究了位于长江流域的南京、武汉、成都、昆明4个站点大气降水δ~(18)O及其相关要素的时空分布特征。对长江流域4站点大气降水中的δ~(18)O与气温、降水量、在不同时间尺度下的相关关系进行了分析与研究,提出长江流域的大气降水线方程并与全球及我国大气降水线相比较。结果表明,4站点δ~(18)O与δD年平均值波动较小,而多年月平均值波动较大,其中昆明波动最大。季节尺度下,长江流域大气降水中δ~(18)O在干季具有显著的温度效应,在湿季具有降水量效应;年尺度下,长江流域具有降水量效应。与全球大气降水线相比,长江流域大气降水线的斜率与截距都要偏小,尤其是截距偏低很多。利用HYSPLIT模型对南京与昆明站点1991年夏季水汽路径进行聚类分析,其分析结果与大气降水线及氘盈余分析结果一致,即站点存在不同水汽来源。 相似文献
8.
祁连山北坡中段降水稳定同位素特征及水汽来源分析 总被引:1,自引:1,他引:1
依据祁连山北坡中段8个站点的降水样品,结合同期气象数据,从降水同位素特征、影响因素以及水汽来源等方面进行分析,结果表明:①研究区降水稳定同位素季节变化明显,表现为夏半年富集,冬半年贫化的特征;在空间尺度上δ18O值随海拔的升高而减小,年降水δ18O的海拔效应为-0. 19‰/100 m;②各站点的局地大气降水线的斜率和截距表现为随海拔的增加而增加的趋势,表明2 000 m以上的高海拔山区受到更强烈的局地再循环水汽的影响;③研究区降水中稳定同位素温度效应显著,δ18O的温度效应为0. 64‰,且仅在夏季存在微弱的降水量效应;④研究区云下蒸发作用显著.在5、6、7和8月,研究区降水δ18O的平均雨滴蒸发率分别为23%、11%、12%和16%,云下蒸发富集率46%、27%、38%和32%;⑤在夏季连续降雨条件下,研究区降水的水汽来源主要为西风水汽,同时受到局地蒸发水汽的影响.本研究结果有助于进一步了解内陆河水文循环过程,为进一步开展干旱区同位素水文研究奠定基础. 相似文献
9.
梅雨期持续性强降水是江淮地区重要的灾害天气,往往给降水地区带来巨大的生命与经济损失。2016年7月1—7日,南京地区经历了一场历时7 d的典型梅雨降雨过程,本文针对此次降水事件的大气水汽稳定同位素变化特征及其成因进行相关研究。研究发现:水汽稳定同位素的变化特征与大尺度有组织对流活动和大气环流有良好的对应关系。水汽稳定同位素随时间分别呈现δ18O的“U型”演化和过量氘的波动变化,二者在不同降雨阶段的演化特征可以指示产生降雨的天气系统的移动与切换,其中水汽过量氘随时间变化的极大值和极小值转折点分别反映了低涡系统开始与结束影响研究区、冷切变线消散、槽线过境以及台风外围水汽抵达研究区的时间。结果表明:多个天气系统连续作用于研究区及其带来的不同水汽源的持续供给,是此次梅雨期降水持续维持的重要条件。 相似文献
10.
11.
广州大气降水中稳定同位素对2008年初华南地区冰雪灾害期间水汽来源的反映 总被引:1,自引:2,他引:1
以5~30 min的时间间隔,收集、分析了2007年4月~2008年6月期间广州市各单次大气降水样品中稳定同位素数据.选取2008年初中国南方冰雪灾害期间(2008年1月10日~2月2日)五场大气降水,分析了极端天气条件下降水中稳定同位素的变化特征及其影响因素.研究发现,在2008年初冰雪灾害期间,广州市大气降水中的δD、δ18O及d-excess发生了明显的下降;d-excess及大气降水线分析指示在此次冰灾过程中水汽来源发生了异常;气团轨迹追踪显示冰灾最盛期降水水汽为内陆和海洋的混合水汽,且远距离的海洋水汽输送占主导.冰雪灾害历次单次降水过程中稳定同位素呈现3种不同的变化形态,即上升型、V型和W型,这些变化可能与水汽来源及降水形成条件导致的再蒸发、再凝结作用及降雨类型有关. 相似文献
12.
我国东北地区大气降水稳定同位素特征及其水汽来源 总被引:9,自引:5,他引:9
依据全球大气降水同位素观测网络(GNIP)中我国东北地区的月大气降水氢氧稳定同位素资料,并结合相关气象资料,分析了该地区大气降水稳定同位素时空分布特征及其影响因子,并建立了局地大气水线方程.结果表明,东北地区大气降水中δ18O值总体上较低,在时间变化上,表现为冬低夏高;从空间分布来看,由南至北加权平均δ18O值呈减小趋势;降水δ18O与温度线性关系显著,而与降水量则不存在线性关系,利用降水δ18O与温度、降水量、高程、经度和纬度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量估算;采用HYSPLIT 4.9模型对GNIP观测点水汽来源进行追踪,气团聚类轨迹表明,该区全年有两条水汽路径,分别为西风带输送的大西洋、极地北冰洋冷湿水汽和太平洋暖湿水汽. 相似文献
13.
石家庄市区土壤水分运移的稳定同位素特征分析 总被引:1,自引:0,他引:1
根据2013年4月到2014年5月测得的石家庄市区降水和2013年石家庄市雨季土壤水、灌溉水的稳定氢氧同位素,通过稳定同位素示踪的方法从时间和空间的角度分析了不同土壤层位中的稳定同位素的变化规律,进而得出土壤的水分迁移过程.结果表明,过量氘均值为-6.188 5‰,反映了石家庄2013~2014年的年降水主要来自季风带来的海洋水汽,同时有一定的局地蒸发.石家庄土壤水的来源主要是降水,灌溉水在雨季前期有辅助作用,且雨季的降水量足以对土壤进行适当补给.10~100 cm土壤水的δ18O值随深度增大而减小,雨季最大蒸发深度在40 cm左右,取样期间基本上形成了一个土壤水δ18O峰值沿剖面徘徊中不断向下推进的情况,反映了降水的入渗、蒸发和新旧水的混合的相互作用. 相似文献
14.
15.
卧龙降水稳定同位素与季风活动的关系 总被引:2,自引:4,他引:2
2003-07~2004-07在四川卧龙自然保护区对逐次降水事件进行采样,分析了降水的稳定同位素特征及其与降水量、气温和风向风速等气象参数的关系.结果表明.4~8月降水的过量氘(d-excess)值为(8.4±7.4)‰,降水由东亚季风带来的大洋水汽主导;9~10月降水的d-excess值为(-7.4±12.5)‰,降水由南亚季风带来的经过强烈分馏作用的大洋水汽主导;11月~次年3月降水的d-excess值为(12.5±12.1)‰,降水由本地蒸发水汽以及西风环流带来的内陆蒸发水汽主导.季风期降水的δD和δ18O具降水量效应(r分别为-0.389、-0.380,P<0.05),次一级是气温影响(P≤0.10).季风期降水的δD、δ18O与南风指数呈显著负相关(r分别为-0.354、-0.390,P<0.05),表明降水中的稳定同位素比率对水汽来源与运输过程指示性很强,特别是南亚季风的暴发带来了稳定同位素比率和d-excess值都极低的降水. 相似文献