首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11–203; Zn: 118–447; Pb: 50.1–132; Cd: 0.55–4.39; Cr: 147.6–288; Mn: 762−1670 μg/g), sediments (Cu: 17.64–34.26; Zn: 80.79–110; Pb: 24.57–49.59; Cd: 0.099–0.324; Cr: 41.6–88.1; Mn: 343−520μg/g) and bivalves (Cu: 6.41–19.76; Zn: 35.5–85.5; Pb: 0.31–1.01; Cd: 0.51–0.67; Mn: 27.45−67.6 μg/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.  相似文献   

2.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

3.
The Second Songhua River was subjected to a large amount of raw or primary effluent from chemical industries in Jilin city in 1960s to 1970s, resulting in serious mercury pollution. However, an understanding of other trace metal pollution has remained unclear. The objective of this study was to investigate trace metal contamination in the sediment of the river. Bottom sediment samples were taken in the river between Jilin city and Haerbin city in 2005. An uncontaminated sediment profile was taken in the Nen River at the same time. Total concentrations of Al, Fe, Mg, Ca, K, Na, Ti, Mn, V, Sc, Co, Cu, Cr, Ni, Pb and Zn in the sediment samples were measured by ICP-MS or ICP-OES, following digestion with various acids. Concentrations of Co, Cu, Cr, Ni, Pb and Zn in the surface sediments were 5.1–14.7, 18.5–78.9, 2.4–75.4, 7.2–29.0, 13.5–124.4, and 21.8–403.1 mg/kg, respectively, generally decreasing along the course of the river from Jilin city to Haerbin city. Background concentrations of trace metals were reconstructed by geochemical normalization to a conservative element scandium. Results showed that concentrations of Co, Cr, and Ni in the sediment were generally only slightly higher than or equal to their background values, while concentrations of Cu, Pb, and Zn in the some sediment samples were significantly higher than their background values. In detail, the sediment at Jilin city was moderately contaminated by Cu, and the sediment of the Second Songhua River was moderately contaminated by Pb and Zn. The top layer (0–10 cm depth) and bottom layers (30–46 cm depth) of one sediment profile at Wukeshu town were generally moderately polluted by Pb and Zn. Synthetically, the surface sediment in the studied river section was classified as natural sediment without ecological risk by the sediment pollution index (SPI) of Cu, Cr, Ni, Pb and Zn. Only the 30–45 cm depth of the sediment profile at Wukeshu town was classified as low polluted sediment by the SPI of these metals, recording a historical contamination of the river in the 1960s to 1970s. This buried contamination of trace metals might pose a potential risk to water column under disturbance of sediment. Foundation item: The National Basic Research Priorities Program of China (2004CB418502)  相似文献   

4.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

5.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

6.
The purpose of this research work was to appraise extent of heavy metals in sediment and the degree to which its quality tainted seasonally and spatially in river Cauvery. In this study, heavy metals such as Fe, Zn, Ni, Mn, Pb, Cu, Co, Cd and Cr were analysed in sediments. Results were compared with sediment quality guidelines from various derived criteria. Twenty-five sampling points were selected based on geographical proximity of agricultural fields and industrial discharges; river-tributary confluence points; settlements located along the river bank; ritual and recreational activities. Sampling was done for the period of 3 years (2007 to 2009). Digestion of the samples was done by microwave-assisted digestion technique. Analysis was carried out using flame furnace atomic absorption spectrophotometer, and results are expressed in micrograms per gram. The mean concentration of Fe (11144 μg/g) followed by Mn (1763.3 μg/g), Zn (93.1 μg/g), Cr (389 μg/g), Ni (27.7 μg/g), Cu (11.2 μg/g), Pb (4.3 μg/g), Co (1.9 μg/g) and Cd (1.3 μg/g) remained within the levels of sediment quality guidelines. Multivariate statistical techniques such as principal component analysis and cluster analysis (CA) were employed to better comprehend the controlling factors of sediment quality and spatial homogeneity among the stations. The sediment geo-accumulation index (Igeo) showed maximum value of Cd (2.69) and least value of Mn (−1.44). The geo-accumulation class (Igeo class) was in the sequence as follows: Cd>Zn>Pb>Cr>Cu>Co>Ni>Fe>Mn. Negative total geo-accumulation indices (Itot) revealed that mean concentration of heavy metals in the river bed sediment are lower than their respective shale values. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. This study concludes that insignificant geo-accumulation with metals except Cd (moderate contamination), Pb and Zn (slight contamination) principally in downstream stretch may perhaps deteriorate the sediment quality due to intensification anthropogenic influences. It also proves that extent of existing metal concentrations in sediments of river Cauvery in Karnataka not exceeded the toxic limit, and there is no peril to the aquatic life.  相似文献   

7.
Concentrations of Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd and Hg were evaluated in surface sediments of two rivers from north of Morocco, known as Souani and Mghogha rivers. Significantly higher concentrations in mg kg???1 dry weight (dw) of Mn (747.6 vs. 392.9), Cr (86.4 vs. 56.3), Zn (299.5 vs. 138.5) were found in sediment samples from Mghogha when compared with Souani river. Average concentrations of Cd and Hg in several sediment samples from both rivers were above the effect range median that predicts toxic effects to aquatic organisms. The calculation of enrichment factors showed that Mn, Cr, Cu and Ni were depleted, whereas Pb and Hg were enriched. The results of geoaccumulation index revealed that sediments of both rivers were unpolluted with most of the metals and moderately contaminated with Fe and Hg. Some of elevated concentrations of Hg, principally in Mghogha River, were due to anthropogenic sources including the direct discharges of industrial zone.  相似文献   

8.
The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg−1 of As, 8.5 mg kg−1 of Cd, 2,740 mg kg−1 of Cu, 1,580 mg kg−1 of Pb and 3,920 mg kg−1 of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.  相似文献   

9.
In the present investigation, bulk and chemical partitioning of elements (Cu, Mn, Ni, Zn, Fe, Ca) together with organic matter as a loss in ignition in the Qarechay River bed sediments have been studied. The concentration of metals in Qarechay River bed sediments is governed by the geological units of the study area. The study of anthropogenic portion shows that a small proportion of elemental concentration belongs to this phase. However, Mn has a large portion of anthropogenic sources (43 %). Also, Mn has a share of 13.6 % in sulfide fractions. This result indicates that Mn is a highly mobile element and can easily enter the water column. The presence of Mn in sulfide fraction might be indicative of initial stages of conversion of oxidation state into reduction in Qarechay River. Share of metals in anthropogenic portion is in the following order: Mn (43 %)?>?Cu (19 %)?>?Zn (10 %)?>?Ni (3 %)?>?Fe (0 %). Organic metallic bonds are not significantly present in the study area. Geochemical index (I geo), pollution index (I poll), enrichment factor (EF), and pollution load index (PLI) values are indicative of a clean environment throughout the river course. These values are in well agreement with results of chemical partitioning data. Eventually, based on the results of chemical partitioning, regional standard of elements for Qarechay River bed sediments has been established.  相似文献   

10.
Sediment core from Korangi Creek, one of the polluted coastal locations along the Karachi Coast Pakistan, was collected to trace the history of marine pollution and to determine the impact of industrial activity in the area. Down core variation of metals such as Ca, K, Mg, Al, S, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn was studied in the 72.0 cm core. Nuclear analytical techniques, proton induced X-rays emission (PIXE), was employed to ascertain the chemical composition in sediment core. Grain size analysis and sediment composition of cored samples indicated that Korangi creek sediments are clayey in nature. Correlation matrix revealed a strong association of Ni, Cu, Cr and Zn with Fe and Mn. To infer anthropogenic input, enrichment factor (EF), degree of contamination and pollution load index were calculated. EF showed severe enrichment in surface sediment for Ni, Cu, Cr and Zn, indicating increased industrial effluents discharge in recent years. The study suggests that heavy metal discharge in the area should be regulated. If the present trend of enrichment is allowed to continue unabated, it is most likely that the local food web complexes in the creek might be at highest risk.  相似文献   

11.
Sediments of El-Mex Bay estuary on the southern Mediterranean Sea have been analyzed for trace metals after sediment fractionation by sequential leaching. A sequential extraction procedure was applied to identify forms of Mn, Cu, Cd, Cr, Zn and Fe. The five steps of the sequential extraction procedure partitioned metals into: CH3COONH4 extractable (F1); NaOAC carbonate extractable (F2); NH2OH.HCl/CH3COOH reducible extractable (F3); H2O2–HNO3 organic extractable (F4) and NHO3/HClO4/HF acid soluble residue (F5). Extracted concentrations of trace metals analyzed after all five steps, were found to be (μg/g) for Mn: 1930.2, Cu: 165.3, Cd: 60.9, Cr: 386.3, Zn: 2351.3 and Fe: 10895. Most of elements were found in reducible fraction except Fe found in acid soluble residue, characterizing stable compounds in sediments. Labile (non-residual) fractions of trace elements (sum of the first four fractions) were analyzed because they are more bioavailable than the residual amount. Correlation analysis was used to understand and visualize the associations between the labile fractions of trace metals and certain forms, since Fe-and Mn-oxides play an important role in trace metals sorption within aquatic systems, especially within El-Mex Bay sediments that characterized by varying metal bioavailability.  相似文献   

12.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

13.
Waters and sediments of Subin River, which flows through the industrial and commercial areas of Kumasi in the Ashanti region of Ghana, were geochemically investigated to ascertain heavy metal pollution levels due to anthropogenic activities. The study shows preoccupying pollution levels that constitute a threat to public and ecological systems. The waters of Subin River are neutral to slightly basic, inferred from pH values of 6.89–7.65). Electric conductivity (EC) of the waters ranges from 822 to 1,821 μs/cm and the range of total dissolved solids (TDS) is from 409 to 913 mg/l. Toxic elements contents of sediments and waters from 10 sites along the river were analysed by instrumental neutron activation analysis (INAA), and Al, As, Cd, Cr, Cu and Zn were determined. The concentrations of Al, As, Cd, Cr, Cu and Zn in the waters range between 4.02–15.18, 0.007–0.16, 0.002–0.05, 0.001–0.019, 1.32–7.04 and 4.28–10.2 mg/l, respectively. The contamination factors (CF) computed for the elements indicate that with the exception of sampling site S10, the sediments are polluted with Cd. Chromium contamination in the sediments is observed at S6 and S7, where the CF values were 1.39 and 1.52, respectively. The pollution load indices (PLI) were low (<1) and ranged from 0.14 to 0.75, suggesting that the overall sediment column of the river is not polluted.  相似文献   

14.
Anthropogenic sources of pollution can significantly contribute to elevated concentrations of toxic elements in soils. A preliminary survey of trace elements content and their availability in residential soils from New Madrid County, Missouri was undertaken. Mean elemental concentrations (mg kg−1, dry wt) of sixty two soil samples were: As 6.6, Be 0.8, Cd 1.6, Co 9.7, Cr 24.5, Cu 18.1, Fe 9951, Mn 298, Ni 15.6, Pb 48.8, V 42.1, Zn 95.5 and Hg 0.05. The US EPA preliminary remediation goals (PRGs) was only exceeded by As (7 % of samples) and V (8% of samples). The Missouri average background values were exceeded by Pb (69%), Zn (31%), Cu (27%), As (23%), Be (19%), Co (18%), Ni (16%), V (8%) and Mn (2%). Crustal enrichments (EFc) for As (97), Cr (6), Cu (10), Pb (121), V (7), and Hg (17) were highest for North Lilbourn soils. Fractionation experiment revealed that Fe (54–79%) was in the residual phase while Zn (70–90%), Mn (88–92%), As (59–81%) and Pb (63–79%) were potentially available in soils. Factor loadings of the element concentrations on principal components 1, 2 and 3 accounted for over 81% variance of the data set. The factor loadings suggested that apart from natural contributions of trace elements to the soils, human activities possibly accounted for other inputs in soils.  相似文献   

15.
The European eel’s swimbladder nematode, Anguillicola crassus, sampled from the Asi River (Orontes River) in Antakya (Hatay, Turkey) in May 2006 were analysed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) for their some heavy metal (Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn) levels. The metal concentrations of the parasites were compared to different organs (swimbladder, liver, muscle and skin) of the fish hosts. The parasite contained statistically highly significantly amounts of Fe (P < 0.05). The iron level of nematode was up to 25.52 times than the muscle of its host, Anguilla anguilla. However, bioconcentration of Cd, Cr, Cu, Hg, Mn, Pb, Zn were detected in the A. crassus and it contained no statistically differences with the other tissues of its host, the eel (P > 0.05). Furthermore, no significant differences were detected in the heavy metal accumulations between the parasitized and un-parasitized fish tissues. The analysed metals (Cd, Cr, Cu, Fe, Mn, Pb and Zn) were found in fish muscle at mean concentrations under the permissible limits proposed by FAO.  相似文献   

16.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

17.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

18.
The assessment of marine pollution due to metals was made for surficial sediments sampled from 20 sites along Mediterranean coast of Egypt. The samples were dried, acid digested and analyzed for leachable and total heavy metal contents (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by flame atomic absorption spectrophotometer (air–acetylene) with deuterium background correction. Evaluation of the heavy metals pollution status was carried out using enrichment factors (EFs), the effect range-low (ERL) and the effect range-median (ERM). The study showed high concentrations of Cd, Co, Pb, Ni and moderate concentrations of Cr, Cu and Mn were contaminated in the sediments of studied sites. The results of Spearman correlation, factor and cluster analysis of the heavy metals analyzed in the collected sediment were discussed. The main source of contamination is the offshore oil field and industrial wastes, which arise due to the ineffective and inefficient operation equipments, illegal discharge and lack of supervision and prosecution of offenders.  相似文献   

19.
The distribution and accumulation of heavy metals in the sediments, especially those nearest of wastewater discharges of south of Spain, were investigated. Sediment samples from 14 locations were collected and characterised for metal content (e.g. Ni, Cu, Zn, Cr, Pb, Mn, Cd and Hg), organic carbon, total nitrogen, total phosphorous, n-hexane-extractable material, carbonates and grain size. Concentration data were processed using correlation analysis and factor analysis. The correlation analysis of concentrations data showed important positive correlations among organic carbon, total phosphorus, Cu, Zn, Cd and Hg, otherwise weak correlations among Mn, Cr, Ni and CO3 2???, indicating that these metals have complicated geochemical behaviours. The use of statistical factor analysis also confirmed these results. Sediments pollution assessment was carried out using geoaccumulation and metal pollution indexes (MPI8). The results revealed that sediments of Cádiz bay and Sancti Petri channel were uncontaminated with the studied metals.  相似文献   

20.
Concentrations of selected heavy metals (Fe, Mn, Ni, Cu, Zn, Pb, Hg, Cr, Al, and As) in surface sediments from 18 stations in the Candarli Gulf were studied in order to understand current metal contamination due to urbanization and economic development in Candarli region, Turkey. The sediment samples were collected by box corer in Candarli Gulf in 2009 to assess heavy metal pollution. Heavy metal concentrations in surface sediment varied from 1.62% to 3.60% for Fe, 0.38?C2.53% for Al, 173?C1,423 for Mn, 8?C100 for Ni, 3?C46 for Cu, 55?C119 for Zn, 16?C138 for Pb, 0.2?C6.3 for Hg, 16?C71 for Cr, and 11?C37 mg kg???1 for As. This study showed that the concentrations of Mn, Ni, Zn, Pb, Hg, and Cr in the surface sediment layers were elevated when compared with the subsurface layers. Both metal enrichment and contamination factors show that Hg, Zn, and Pb contamination exists in the entire study area and contamination of other metals is also present in some locations depending on the sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号