首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the “Framework for Rapid Emissions Scenario and Health impact ESTimation” (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest that FRESH-EST could be used to identify potentially more desirable pollution control alternatives in air quality management planning.  相似文献   

2.
In the second half of 1997, large areas in Southeast Asia were severely affected by a smoke-haze pollution episode caused by the emissions of an estimated 45,600 km2 of vegetation that burnt on the Indonesian islands Kalimantan and Sumatra. To document the impacts of these fires on air quality, data for total suspended particulate matter (TSP) and for particulate matter below or equal to 10 microns in diameter (PM10) from selected sites in Indonesia, Malaysia and Singapore are analysed in this paper. These data are supplemented by meteorological data, satellite images and a summary of related research. TSP was above 2,000 μg m–3 for several days in Indonesian locations close to the most extensive fire activity. In Malaysia and Singapore, ambient particle concentrations increased to several times their average September levels. Characteristically for emissions from vegetation burning, the additional atmospheric particle loading during the smoke-haze episode was predominantly due to an increase of the fraction below or equal to 2.5 microns in diameter (PM2.5). Due to the dominance of respirable particles (PM2.5) in the smoke-haze, air quality reporting based on TSP or PM10 may be inadequate to assess the health risk. Upgrading of PM2.5 monitoring facilities is therefore needed. Reducing the probability of similar smoke-haze events in future would require appropriate fire use and smoke management strategies. Electronic Publication  相似文献   

3.
BackgroundClimate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties.ObjectivesWe conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty.MethodsA literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013.DiscussionFifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality.There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced.ConclusionsProjecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.  相似文献   

4.
BackgroundAir pollution benefits assessments tend to be time and resource intensive. Reduced-form approaches offer computational efficiency, but may introduce uncertainty. Some reduced-form approaches apply simplified air quality models, which may not capture the complex non-linear chemistry governing the formation of certain pollutants such as PM2.5. Other approaches apply the results of sophisticated photochemical modeling, but characterize only a small number of source types in a limited geographic area.MethodsWe apply CAMx source apportionment photochemical modeling, coupled with a PC-based human health benefits software program, to develop a suite of PM2.5 benefit per ton estimates. These per-ton estimates relate emission changes to health impacts and monetized benefits for 17 sectors across the continental U.S., including Electricity Generating Units (EGU), mobile, area and industrial point sources.ResultsThe benefit per ton of reducing directly emitted PM2.5 is about an order of magnitude larger than reducing emissions of PM2.5 precursor emissions. On a per-ton basis, the value of reducing directly emitted PM2.5 and PM2.5 precursors in 2005 ranges between approximately $1300 (2010$) for reducing a ton of NOx from Ocean-Going Vessels to about $450,000 (2010$) for reducing a ton of directly emitted PM2.5 from Iron and Steel facilities. The benefit per ton estimates for 2016 are generally higher than the 2005 estimates. The values estimated here are generally comparable with those generated using photochemical modeling, but larger than those calculated using simplified air quality models.ConclusionsOur approach characterizes well the per-ton benefits of reducing emissions from a broad array of 17 industrial point, EGU and mobile sectors, while our use of photochemical air quality modeling gives us greater confidence that we have accounted for the non-linear chemistry governing PM2.5 formation. The resulting benefit per-ton estimates thus represent a compromise between approaches that may simplify the treatment of PM2.5 air quality formation and those techniques that are based in photochemical modeling but account for only a small number of emission sources.  相似文献   

5.
Ground level air pollution, especially fine particulate matter (PM2.5), has been associated with a number of adverse health effects. The dispersion of PM2.5 through the atmosphere depends on several mutually connected anthropogenic, geophysical and meteorological parameters, all of which are affected by climate change. This study examines how projected climate change would affect population exposure to PM2.5 air pollution in Poland. Population exposure to PM2.5 in Poland was estimated for three decades: the 1990s, 2040s and 2090s. Future climate conditions were projected by Regional Climate Model RegCM (Beta), forced by the general atmospheric circulation model ECHAM5. The dispersion of PM2.5 was simulated with chemical transport model CAMx version 4.40. Population exposure estimates of PM2.5 were 18.3, 17.2 and 17.1 μg/m3 for the 1990s, 2040s and 2090s, respectively. PM2.5 air pollution was estimated to cause approximately 39,800 premature deaths in the population of Poland in the year 2000. Our results indicate that in Poland, climate change may reduce the levels of exposure to anthropogenic particulate air pollution in future decades and that this reduction will reduce adverse health effects caused by the air pollution.  相似文献   

6.
We estimated PM2.5-related public health impacts/ton emitted of primary PM2.5, SO2, and NOx for a set of power plants in the Mid-Atlantic and Lower Great Lakes regions of the United States, selected to include varying emission profiles and broad geographic representation. We then developed a regression model explaining variability in impacts per ton emitted using the population distributions around each plant. We linked outputs from the Community Multiscale Air Quality (CMAQ) model v 4.7.1 with census data and concentration–response functions for PM2.5-related mortality, and monetized health estimates using the value-of-statistical-life. The median impacts for the final set of plants were $130,000/ton for primary PM2.5 (range: $22,000–230,000), $28,000/ton for SO2 (range: $19,000–33,000), and $16,000/ton for NOx (range: $7100–26,000). Impacts of NOx were a median of 34% (range: 20%–75%) from ammonium nitrate and 66% (range: 25%–79%) from ammonium sulfate. The latter pathway is likely from NOx enhancing atmospheric oxidative capacity and amplifying sulfate formation, and is often excluded. Our regression models explained most of the variation in impact/ton estimates using basic population covariates, and can aid in estimating impacts averted from interventions such as pollution controls, alternative energy installations, or demand-side management.  相似文献   

7.
Recognition has grown among policy-makers that early in the decision-making process, there is a need for an environmental assessment of the effects of the policy, plan, and program (PPP) and their alternatives. Strategic environmental assessment (SEA) is widely recognized as a supporting tool that systematically integrates environmental aspects into strategic decision-making processes, thereby contributing to sustainable development. In this study, SEA was applied for an integrated assessment of environmental, social, and economic impacts of a wide range of scenarios for transport-related air quality policies to help decision-makers in identifying the most sustainable scenario with the purpose of reducing carbon monoxide (CO) concentrations from transport emissions in Hanoi City, Vietnam. In conducting SEA process, the urban air dispersion model MUAIR was used as a quantitative tool in prediction of CO concentrations. To evaluate the predicted impacts of scenarios, the SEA objectives concerning sustainability and the corresponding sustainable indicators were identified. Based on the likely significant predicted impacts on landscape, biodiversity, and health benefits, mitigation measures were proposed. These included planning in infrastructure development and implementation of public education campaign. The results of predicted and evaluated impacts of scenarios as well as proposed mitigation measures were taken into account for supporting sound decision-making that is consistent with the principles of sustainable development. Considering sustainable impacts of the scenarios, the SEA result clearly indicates that a combination of policy for public transport development and policy for installation of oxidation catalytic converter for motorcycles is the most sustainable scenario for reducing CO concentrations from transport emissions.  相似文献   

8.
Efficient protection against global climate change requires international emission reduction measures. Before these ones are decided, the individual states should make arrangements within their own scope of authority for preventing and mitigating the adverse impacts of climate change already in progress as a consequence of carbon dioxide emissions done so far. In spring 2008 Hungary—among the very first ones in the international stage—passed a middle-term National Climate Change Strategy, which determines both the national tasks in order to reduce greenhouse gas emissions, and sectoral tasks of the adaptation to the ongoing climate change for the period of 2008–2025. As a concrete case study we investigated the possible impacts of the regional change in atmospheric carbon dioxide concentration, temperature and precipitation conditions of the Carpathian Basin on the cultivation conditions of maize, based on the downscaled IPCC 2007 scenarios. Temperatures of each scenarios increased significantly to basic run (1961–1990). This change suppressed the positive influence of elevated CO2 on carbon assimilation. Serious depression may be waited during extreme hot days at Keszthely, Hungary.  相似文献   

9.
With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.  相似文献   

10.
Burning candles and incense generate particulate matter (PM) that produces poor indoor air quality and may cause human pulmonary problems. This study physically characterised combustion particles collected in a church during services. In addition, the emissions from five types of candles and two types of incense were investigated using a combustion chamber. The plasmid scission assay was used to determine the oxidative capacities of these church particles. The corresponding risk factor (CRf) was derived from the emission factor (Ef) and the oxidative DNA damage, and used to evaluate the relative respiratory exposure risks. Real-time PM measurements in the church during candle–incense burning services showed that the levels (91.6 μg/m3 for PM10; 38.9 μg/m3 for PM2.5) exceeded the European Union (EU) air quality guidelines. The combustion chamber testing, using the same environmental conditions, showed that the incense Ef for both PM10 (490.6–587.9 mg/g) and PM2.5 (290.1–417.2 mg/g) exceeded that of candles; particularly the PM2.5 emissions. These CRf results suggested that the exposure to significant amounts of incense PM could result in a higher risk of oxidative DNA adducts (27.4–32.8 times) than tobacco PM. The generation and subsequent inhalation of PM during church activities may therefore pose significant risks in terms of respiratory health effects.  相似文献   

11.
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~ 16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.  相似文献   

12.
BackgroundMotor vehicle emissions contribute nearly a quarter of the world's energy-related greenhouse gases and cause non-negligible air pollution, primarily in urban areas. Changing people's travel behaviour towards alternative transport is an efficient approach to mitigate harmful environmental impacts caused by a large number of vehicles. Such a strategy also provides an opportunity to gain health co-benefits of improved air quality and enhanced physical activities. This study aimed at quantifying co-benefit effects of alternative transport use in Adelaide, South Australia.MethodWe made projections for a business-as-usual scenario for 2030 with alternative transport scenarios. Separate models including air pollution models and comparative risk assessment health models were developed to link alternative transport scenarios with possible environmental and health benefits.ResultsIn the study region with an estimated population of 1.4 million in 2030, by shifting 40% of vehicle kilometres travelled (VKT) by passenger vehicles to alternative transport, annual average urban PM2.5 would decline by approximately 0.4 μg/m3 compared to business-as-usual, resulting in net health benefits of an estimated 13 deaths/year prevented and 118 disability-adjusted life years (DALYs) prevented per year due to improved air quality. Further health benefits would be obtained from improved physical fitness through active transport (508 deaths/year prevented, 6569 DALYs/year prevented), and changes in traffic injuries (21 deaths and, 960 DALYs prevented).ConclusionAlthough uncertainties remain, our findings suggest that significant environmental and health benefits are possible if alternative transport replaces even a relatively small portion of car trips. The results may provide assistance to various government organisations and relevant service providers and promote collaboration in policy-making, city planning and infrastructure establishment.  相似文献   

13.
The paper calculates the implications of including monetary measurements of environmental emission changes for the welfare impacts of ecological tax reforms in Italy and Sweden. Taxes on emissions of SO2, NOx and CO2 are investigated. Country-specific computable equilibrium models are used for estimating net welfare changes of the introduction of these taxes, the incomes of which are used for reducing distorting labour taxes. The results indicate that the inclusion of environmental benefits reduces the costs of ecological tax reforms considerably for both countries, and may even turn into net welfare gains.  相似文献   

14.
The European Variant Berkeley Trent (EVn-BETR) multimedia fugacity model is used to test the validity of previously derived emission estimates and predict environmental concentrations of the main decabromodiphenyl ether congener, BDE-209. The results are presented here and compared with measured environmental data from the literature. Future multimedia concentration trends are predicted using three emission scenarios (Low, Realistic and High) in the dynamic unsteady state mode covering the period 1970–2020. The spatial and temporal distributions of emissions are evaluated. It is predicted that BDE-209 atmospheric concentrations peaked in 2004 and will decline to negligible levels by 2025. Freshwater concentrations should have peaked in 2011, one year after the emissions peak with sediment concentrations peaking in 2013. Predicted atmospheric concentrations are in good agreement with measured data for the Realistic (best estimate of emissions) and High (worst case scenario) emission scenarios. The Low emission scenario consistently underestimates measured data. The German unilateral ban on the use of DecaBDE in the textile industry is simulated in an additional scenario, the effects of which are mainly observed within Germany with only a small effect on the surrounding areas. Overall, the EVn-BTER model predicts atmospheric concentrations reasonably well, within a factor of 5 and 1.2 for the Realistic and High emission scenarios respectively, providing partial validation for the original emission estimate. Total mean MEC:PEC shows the High emission scenario predicts the best fit between air, freshwater and sediment data. An alternative spatial distribution of emissions is tested, based on higher consumption in EBFRIP member states, resulting in improved agreement between MECs and PECs in comparison with the Uniform spatial distribution based on population density. Despite good agreement between modelled and measured point data, more long-term monitoring datasets are needed to compare predicted trends in concentration to determine the rate of change of POPs within the environment.  相似文献   

15.
A statistical model was developed using satellite remote sensing data and meteorological parameters to evaluate the effectiveness of air pollution control measures during the 2008 Beijing Olympic Games. Custom satellite retrievals under hazy conditions were included in the modeling dataset to represent the air pollution levels more accurately. This model explained 70% of the PM2.5 variability during the modeling period from June to October 2008. Using this tool, we estimate that the aggressive emission reduction measures alone effectively lowered PM2.5 levels by 20–24 μg/m3 or 27–33% on average during the Games period, which is substantially greater than those reported previously. Since parameters required to develop this model are readily available in most cities of the world, it can be quickly applied after other major events to evaluate air pollution control policy.  相似文献   

16.
The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM2.5, with total or cause‐specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM10 and PM2.5–10 an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM10 or PM2.5–10. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM10 and PM2.5–10, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust.  相似文献   

17.
Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5 km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a + 5 °C increase in air temperature on the 2003 baseline. Deaths brought forward and hospitalisation burdens for 12 UK regions were calculated from population-weighted daily maximum 8-hour O3. The magnitude of changes in annual mean surface O3 over the UK for + 5 °C temperature (+ 1.0 to + 1.5 ppbv, depending on region) was comparable to those due to inter-annual meteorological variability (− 1.5 to + 1.5 ppbv) but considerably less than changes due to precursor emissions changes by 2030 (− 3.0 to + 3.5 ppbv, depending on scenario and region). Including population changes in 2030, both the ‘current legislation’ and ‘maximum feasible reduction’ scenarios yield greater O3-attributable health burdens than the ‘high’ emission scenario: + 28%, + 22%, and + 16%, respectively, above 2003 baseline deaths brought forward (11,500) and respiratory hospital admissions (30,700), using O3 exposure over the full year and no threshold for health effects. The health burdens are greatest under the ‘current legislation’ scenario because O3 concentrations increase as a result of both increases in background O3 concentration and decreases in UK NOx emissions. For the + 5 °C scenario, and no threshold (and not including population increases), total UK health burden increases by 500 premature deaths (4%) relative to the 2003 baseline. If a 35 ppbv threshold for O3 effects is assumed, health burdens are more sensitive to the current legislation and + 5 °C scenarios, although total health burdens are roughly an order of magnitude lower. In all scenarios, the assumption of a threshold increases the proportion of health burden in the south and east of the UK compared with the no threshold assumption. The study highlights that the total, and geographically-apportioned, O3-attributable health burdens in the UK are highly sensitive to the future trends of hemispheric, regional and local emissions of O3 precursors, and to the assumption of a threshold for O3 effect.  相似文献   

18.
IntroductionLong-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France.ObjectivesWe analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013.MethodsThe study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations.ResultsThe cohort recorded 1967 non-accidental deaths. Long-term exposures to baseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR = 1.09;95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR = 1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR = 1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality.ConclusionLong-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.  相似文献   

19.
This study was performed to investigate the concentration of PM10 and PM2.5 inside trains and platforms on subway lines 1, 2, 4 and 5 in Seoul, KOREA. PM10, PM2.5, carbon dioxide (CO2) and carbon monoxide (CO) were monitored using real-time monitoring instruments in the afternoons (between 13:00 and 16:00). The concentrations of PM10 and PM2.5 inside trains were significantly higher than those measured on platforms and in ambient air reported by the Korea Ministry of Environment (Korea MOE). This study found that PM10 levels inside subway lines 1, 2 and 4 exceeded the Korea indoor air quality (Korea IAQ) standard of 150 μg/m3. The average percentage that exceeded the PM10 standard was 83.3% on line 1, 37.9% on line 2 and 63.1% on line 4, respectively. PM2.5 concentration ranged from 77.7 μg/m3 to 158.2 μg/m3, which were found to be much higher than the ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 h arithmetic mean: 65 μg/m3). The reason for interior PM10 and PM2.5 being higher than those on platforms is due to subway trains in Korea not having mechanical ventilation systems to supply fresh air inside the train. This assumption was supported by the CO2 concentration results monitored in tube of subway that ranged from 1153 ppm to 3377 ppm. The percentage of PM2.5 in PM10 was 86.2% on platforms, 81.7% inside trains, 80.2% underground and 90.2% at ground track. These results indicated that fine particles (PM2.5) accounted for most of PM10 and polluted subway air. GLM statistical analysis indicated that two factors related to monitoring locations (underground and ground or inside trains and on platforms) significantly influence PM10 (p < 0.001, R2 = 0.230) and PM2.5 concentrations (p < 0.001, R2 = 0.172). Correlation analysis indicated that PM10, PM2.5, CO2 and CO were significantly correlated at p < 0.01 although correlation coefficients were different. The highest coefficient was 0.884 for the relationship between PM10 and PM2.5.  相似文献   

20.
BackgroundSystematic review and meta-analysis (SRMA) are increasingly employed in environmental health (EH) epidemiology and, provided methods and reporting are sound, contribute to translating science evidence to policy. Ambient air pollution (AAP) is both among the leading environmental causes of mortality and morbidity worldwide, and of growing policy relevance due to health co-benefits associated with greenhouse gas emissions reductions.ObjectivesWe reviewed the published AAP SRMA literature (2009 to mid-2015), and evaluated the consistency of methods, reporting and evidence evaluation using a 22-point questionnaire developed from available best-practice consensus guidelines and emerging recommendations for EH. Our goal was to contribute to enhancing the utility of AAP SRMAs to EH policy.Results and discussionWe identified 43 studies that used both SR and MA techniques to examine associations between the AAPs PM2.5, PM10, NO2, SO2, CO and O3, and various health outcomes. On average AAP SRMAs partially or thoroughly addressed 16 of 22 questions (range 10–21), and thoroughly addressed 13 of 22 (range 5–19). We found evidence of an improving trend over the period. However, we observed some weaknesses, particularly infrequent formal reviews of underlying study quality and risk-of-bias that correlated with lower frequency of thorough evaluation for key study quality parameters. Several other areas for enhanced reporting are highlighted.ConclusionsThe AAP SRMA literature, in particular more recent studies, indicate broad concordance with current and emerging best practice guidance. Development of an EH-specific SRMA consensus statement including a risk-of-bias evaluation tool, would be a contribution to enhanced reliability and robustness as well as policy utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号