首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text]?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-), and Na(+)?>?Mg(2+)?>?Ca(2+)?:?Cl(-)?>?[Formula: see text]?>?[Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.  相似文献   

2.
Groundwater samples from the shallow unconfined aquifer were collected from fifteen borewells in Kalpakkam nuclear plant site and were analysed for various physico-chemical parameters. The pH, temperature, salinity, TDS and EC were measured in the field. The borewell samples were analysed in the laboratory for Ca(2+), Mg(2+), Na(+), Cl(-), [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. The Piper Trilinear diagram showed that majority of the borewell samples fall in Na - Cl +SO(4) type and Na - CO(3)+HCO(3) type. The Cl: HCO3 ratio of some borewell samples are categorized under injuriously contaminated to highly injurious type. The higher salinity levels encountered in some borewells emphasized the need for better understanding of groundwater corrosiveness. Accordingly, the Langeliar saturation Index (SI), Aggressivity index (AI) and Larson ratio (LnR) were evaluated for assessing the corrosive nature of the groundwater. The saline water incursion in the southern part of the study area increased the ionic concentration of Cl(-) and [Formula: see text] that made the groundwater corrosive.  相似文献   

3.
Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl(-)), nitrate [Formula: see text], sulfate [Formula: see text], sodium (Na(+)), ammonium [Formula: see text], potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)) in addition to precipitation amount, pH and conductivity measurements over the period 1998-2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was [Formula: see text] with annual volume weighted mean concentration of 242 microeq L(-1). Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca(2+), Mg(2+), and K(+) as well as the absorption of ammonia. The ratio of [Formula: see text] was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO(4)-S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12-35 kg ha(-1).  相似文献   

4.
PM(2.5) nitrate [Formula: see text] and sulfate ([Formula: see text]) were measured continuously with R&P8400N and R&P8400S instruments, respectively, and compared with filter-based measurements at the Fresno Supersite from October, 2000 through December, 2005. [Formula: see text] concentrations were higher in winter than summer with a long-term decreasing trend. Correlations between 24-h average continuous and filter-based [Formula: see text] were greater than 0.96 in 4 out of 5 years. Continuous [Formula: see text] was generally lower than filter-based [Formula: see text] although the difference decreased over time, from -52% in 2001 to +13% in 2005. These differences were similar in winter (-23%) and summer (-19%) while the corresponding differences between ambient and instrument temperature were -12 and 0.7 degrees C, respectively. Neither seasonal nor long-term trends in [Formula: see text] can be explained by variations in ambient temperature, the difference between ambient and instrument temperature, or changes in aerosol chemical composition. There were no seasonal or long-term trends in [Formula: see text] concentrations, partially due to low concentrations observed in Fresno. Long-term variability in the performance of R&P8400 [Formula: see text] and [Formula: see text] instruments suggest that collocation with filter measurements is needed for long-term measurements.  相似文献   

5.
The chemical composition of bulk precipitation and throughfall were analyzed, during a 1-year period (2002), in rural-urban-industry gradients with similar forest cover (Eucalyptus spp.) in southern Brazil (Rio Grande and Porto Alegre cities). Values of pH varied from 5.0-5.1 in rural to 5.4-6.1 in industrial sites, and were intermediate in urban sites. The major ions in bulk precipitation were Na(+), Cl(-), [Formula: see text], [Formula: see text] and [Formula: see text], and concentrations increased in urban and industrial sites. Principal component analysis identified the local main anthropogenic sources. Estimated annual amounts of dry deposition were generally greater in both industrial and urban sites than in rural sites. Areas close to industrial activity showed greater S and N total deposition (10.4-10.9 and 20.2-30.6 kg/ha, respectively) than in urban (3.4-7.3 and 14.6-24.1 kg/ha) and in rural (1.7-2.6 and 8.9-12.1 kg/ha) sites. Annual deposition of Ca and P varied from 0.6 and 3.0 kg/ha in rural to 45.4 and 32.4 kg/ha in industrial sites, maximum values being observed closed to the phosphate fertilizer plant of Rio Grande. Deposition in urban and industrial sites may be balanced by the alkaline cations, as bulk precipitation pH varied from 5.4 to 6.1, and was greater than in rural sites (5.0-5.1).  相似文献   

6.
The application of different multivariate statistical approaches for the interpretation of a complex data matrix obtained during the period 2004-2005 from Uluabat Lake surface water is presented in this study. The dataset consists of the analytical results of a 1 year-survey conducted in 12 sampling stations in the Lake. Twelve parameters (T, pH, DO, [Formula: see text], NH(4)-N, NO(2)-N, NO(3)-N, [Formula: see text], BOD, COD, TC, FC) were monitored in the sampling sites on a monthly basis (except December 2004, January and February 2005, a total of 1,296 observations). The dataset was treated using cluster analysis, principle component analysis and factor analysis on principle components. Cluster analysis revealed two different groups of similarities between the sampling sites, reflecting different physicochemical properties and pollution levels in the studied water system. Three latent factors were identified as responsible for the data structure, explaining 77.35% of total variance in the dataset. The first factor called the microbiological factor explained 32.34% of the total variance. The second factor named the organic-nutrient factors explained 25.46% and the third factor called physicochemical factors explained 19.54% of the variances, respectively.  相似文献   

7.
An experiment was carried out to determine the acute toxicity and bioconcentration factor of Xinjunan in zebrafish under semi-static test method. The result of the 96-h LC(50) values (0.31 mg/L), at 95% confidence limit, revealed that Xinjunan was highly toxic. Bioconcentration factor after 8 days exposure, 451.0 and 273.2, respectively, at two concentrations, were at medium bioconcentration range. To determine Xinjunan residues in water and fish, a method was developed by using a liquid-liquid distribution and a cationic exchange solid-phase extraction method to extract and clean up Xinjunan in fish, and then using a weak cationic exchange column with gradient elution and second-order mass spectrometry with selected reaction monitoring mode detection. This method found a good linear relationship (r > 0.99), the lowest limit of quantification with a signal-to-noise ratio of 10:1 was 0.02 [Formula: see text]g/L in water and 5 [Formula: see text]g/kg in fish, the recovery ranged from 97% to 109% for water and fish at different levels with a coefficient of variation less than 5%. The accuracy, precision, and lowest limit of detection of the method used for residue analysis of Xinjunan in water and fish can meet environmental exposure monitoring requirements. The results of the acute toxicity and bioconcentration provide a basis for environmental risk analysis of Xinjunan.  相似文献   

8.
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO3). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.  相似文献   

9.
Evaluation of groundwater quality represents significant input for the development and utilization of water resources. Increasing exploitation of groundwater and man-made pollution has seriously affected the groundwater quality of the North China Plain, such as in the Xuzhou region which is the target of this investigation. The assessment of the groundwater quality and sources in the region was based on analyses of water chemistry and 222Rn activity in samples collected from wells penetrating unconfined and confined aquifers. The results indicate that most of the untreated groundwater in the region is not suitable for the long-term drinking based on permissible limits of the Chinese Environmental Agency and the World Health Organization. However, the groundwater can be used as healthy source of drinking water when they can pass the biological test and softening water treatment. Most of the groundwater is suitable for irrigation. Excessive amounts of SO42? and NO3? are attributed to mainly influence of wastewater, irrigation, and dissolution of sulfate minerals in local coal strata. The major source of the groundwater is meteoric recharge with addition from irrigation and wastewater discharges. Variability of the water quality seems to be also reflecting the type of aquifers where the highest concentration of HCO3? occurs in water of the carbonate fractured aquifer, while the highest Cl? concentration in the unconfined aquifer. Source of 222Rn activity is mainly related to the rock-water interaction with possible addition from the agricultural fertilizers. Protection of groundwater is vital to maintain sustainable drinking quality through reducing infiltration of irrigation water and wastewater.  相似文献   

10.
In the Nile Valley and Delta the protection of groundwater resources is high priority environmental concern. Many groundwater quality problems are already dispersed and may be widespread and frequent in occurrence. Examples include problems associated with the extensive application of chemical fertilizers in agricultural specially in the new reclaimed areas, leaks in sewers, septic tanks, the aggregate effects of many different points source pollution in urban areas and natural, geologically related water quality problems. A national groundwater quality monitoring has been designed and implemented based on the stepwise procedure. The national groundwater quality monitoring network is used to quantify the quality changes in long run, either caused by pollution activities or by salt water intrusion and to describe the overall current groundwater quality status on a national scale of the main aquifers. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of groundwater in various purposes. This national monitoring network plays important roles for decision makers in developing the groundwater resources management plans in different aquifers systems in Egypt.  相似文献   

11.
Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.  相似文献   

12.
Chemical properties and pollution of water resources were studied in the Chah basin that is located in the Hamadan province, western Iran. Water quality was characterized according to its major constituents and the geological features of the area. Chemical analysis results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes. Groundwater in the studied area is, for the most part, weakly to moderately mineralized and dominated by the calcium (Ca(2+)) and bicarbonate (HCO3-) ions. Within the basin, three different hydrogeochemical facies have been identified: Ca-HCO(3), Ca-SO(4) and Mg-HCO(3). The predominant water type of groundwater samples is the Ca-HCO(3) facies in the recharge area and has a tendency toward Mg-HCO(3) and Ca-SO(4) facies along the direction of water flow. The samples were classified into four groups based on chloride (Cl(-)) and nitrate (NO3-) concentrations and the processes that control water chemistry has been discussed. The results explained the importance of cation exchange, mineral weathering, and anthropogenic activities on groundwater chemistry. It was indicated that cation exchange and Cl-salt inputs are the major process controlling the water chemistry of the low Cl(-) and high [NO3-] (group 2) and high Cl(-) and [NO3-] (group 4). Groundwaters low in NO3- and high in Cl(-) (group 3) and low in NO3- and Cl(-) (group 1) are mainly affected by cation exchange and mineral dissolution. Pollution of groundwaters appeared to be affected by the application of fertilizers, irrigation practice, and solubility of mineral phases and discharge of domestic sewage. Measuring and predicting the mass loading of pollutant to groundwater from specific agricultural systems seems to be useful aids in controlling pollutions in groundwater.  相似文献   

13.
Groundwater contamination and its effect on health in Turkey   总被引:1,自引:0,他引:1  
The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Ayd?n. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper K?z?l?rmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in ?stanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in ?anakkale, ?zmir, Mu?la, Kütahya, and Bal?kesir, cause serious groundwater quality problems.  相似文献   

14.
Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca–HCO3, Na–Cl, Mixed CaNaHCO3, and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process.  相似文献   

15.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium.  相似文献   

16.
In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate ( $\updelta ^{15}$ N and $\updelta ^{18}$ O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.  相似文献   

17.
Quality assessment of water is essential to ensure sustainable safe use of it for drinking, agricultural, and industrial purposes. For the same purpose the study was conducted for the samples of water of Sambhar lake city and its adjoining areas. The standard methods of APHA were used to analysis 15 samples collected from hand pumps and tube wells of the specified area. The analytical results show higher concentration of total dissolved solids, electrical conductivity sodium, nitrate, sulfate, and fluoride, which indicate signs of deterioration but values of pH, calcium, magnesium, total hardness, and carbonate are within permissible limits as per WHO standards. From the Hill-piper trilinear diagram, it is observed that the majority of groundwater from sampling stations are sodium?Cpotassium?Cchloride?Csulfate type water. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US salinity laboratory diagram for irrigation water. Only the one sample fall in C3S1 quality with high salinity hazard and low sodium hazard. Other samples fall in high salinity hazard and high sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation is in order sodium > magnesium > calcium > potassium while for the anion it is chloride > bicarbonate > nitrate > sulfate.  相似文献   

18.
In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO3 type in grass land to Ca·Na-Cl (+NO3) type and Na (Ca)-Cl (+NO3+SO4) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO3) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.  相似文献   

19.
Excess intake of fluoride through drinking water causes fluorosis on human beings in many States of the country (India), including Andhra Pradesh. Groundwater quality in the Varaha River Basin located in the Visakhapatnam District of Andhra Pradesh has been studied, with reference to fluoride content, for its possible sources for implementing appropriate management measures, according to the controlling mechanism of fluoride concentration in the groundwater. The area occupied by the river basin is underlain by the Precambrian Eastern Ghats, over which the Recent sediments occur. Results of the chemical data of the groundwater suggest that the considerable number of groundwater samples show fluoride content greater than that of the safe limit prescribed for drinking purpose. Statistical analysis shows that the fluoride has a good positive relation, with pH and bicarbonate. This indicates an alkaline environment, as a dominant controlling mechanism for leaching of fluoride from the source material. Other supplementary factors responsible for the occurrence of fluoride in the groundwater are evapotranspiration, long contact time of water with the aquifer material, and agricultural fertilizers. A lack of correlation between fluoride and chloride, and a high positive correlation between fluoride and bicarbonate indicate recharge of the aquifer by the river water. However, the higher concentration of fluoride observed in the groundwater in some locations indicates insufficient dilution by the river water. That means the natural dilution did not perform more effectively. Hence, the study emphasizes the need for surface water management structures, with people's participation, for getting more effective results.  相似文献   

20.
Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO $_{3}^{\,\,-})$ contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号