首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
为了解决超临界二氧化碳管道泄漏风险评估问题,基于工业规模超临界二氧化碳小孔泄漏试验结果,提出分别构建超临界泄漏阶段、气液两相泄漏阶段、气相泄漏阶段的理论模型,并通过确定各阶段的传递参数,实现二氧化碳减压过程的理论建模。采用MATLAB软件编制了模型求解程序。通过试验数据验证了理论模型的可靠性。基于理论模型计算结果定量探讨了初始压力、初始温度和泄漏口径对泄漏减压过程压力及质量流量的影响。结果表明:初始压力在8~9.5 MPa变化时,对减压过程压力及泄漏质量流量影响较小;初始温度在33~39℃变化时,压力降至临界值的时间逐渐增加;泄漏口径减小,压降时间显著变长;在泄漏减压初期,泄漏质量流量均出现波动,随后随压力降低而逐渐降低。构建的理论模型能够实现超临界二氧化碳泄漏质量流量预测。  相似文献   

2.
瓦斯对煤尘爆炸特性影响的实验研究   总被引:2,自引:3,他引:2  
瓦斯的存在对煤尘爆炸特性的理论计算和数值仿真的结果与实际数据有一定差距,因此,通过不同浓度瓦斯与煤尘共存条件下爆炸实验研究,得出了矿井瓦斯对煤尘的最低着火温度、最小点火能量、爆炸下限浓度、最大爆炸压力和最大爆炸压力上升速度等爆炸特性影响的规律即瓦斯对煤尘最低着火温度影响不大;瓦斯可使煤尘的最小点火能量减小,尤其是对难于点燃的煤尘;混合物的爆炸下限浓度随瓦斯浓度的增加而降低;混合物的最大爆炸压力上升速度由于瓦斯的存在而增强,而最大爆炸压力几乎没有变化。同时研究了瓦斯对无爆炸性煤尘的影响。实验研究的结论对于现场防止煤尘爆炸的发生具有指导意义。  相似文献   

3.
运用自建瓦斯爆炸实验平台,对障碍物与管道壁面间距比变化下的瓦斯爆炸特性进行实验研究。结果表明:随着障碍物与管道壁面间距比的增加,预混气体的爆炸压力和平均火焰传播速度都有一定程度的增大,其中当障碍物与管道两侧壁面间距比相同时,对爆炸火焰传播特性的影响最大;相比于其他阻塞率的障碍物,间距比的改变对阻塞率50%的障碍物爆炸压力增幅比最大,对比间距比为0时的爆燃压力,间距比为0.25和0.5时的爆燃压力分别增加了55.6%,101.8%。研究结果可为工业和井下设备的设计、安装提供实验依据,具有一定的理论和现实指导意义。  相似文献   

4.
为研究受限空间内甲烷-氢气-空气混合气体爆炸特性参数分布规律,在20 L球形压力容器装置内开展甲烷-氢气-空气混合气体爆炸实验,探究掺氢比变化对当量比为1的甲烷-氢气-空气混合气体爆炸过程的影响;运用Fluent数值模拟软件,采用标准k-ε湍流模型,结合层流有限速率燃烧模型,探究混合气体爆炸过程中燃烧特性(爆炸温度、压力、密度等)与反应时间的变化规律。研究结果表明:爆炸过程中,添加一定氢气时爆炸压力峰值、爆炸压力上升速率峰值增大,而到达峰值时间缩短;反应初期,中心点火处密度下降,反应釜各处密度持续上升;距离点火点越远,密度变化越大,反应釜中压力分布基本相同。研究结果可为甲烷-氢气-空气混合燃料的安全使用提供相关参考。  相似文献   

5.
基于激波管的油气爆炸实验和数据分析   总被引:1,自引:0,他引:1  
通过对封闭激波管的油气爆炸实验,发现了爆炸时存在"呼吸"现象和震荡现象。通过对爆炸时的压力时间序列分析,除了得到了不同位置压力数量变化特征外,还得到了"呼吸"现象与油气的CH浓度和生成的二氧化碳浓度有关;在不同的CH浓度下,存在三种典型的压力变化曲线;震荡现象与CH浓度有关,没有固定的震荡周期,而且在不同压力变化阶段存在不同的震荡情况等结论。  相似文献   

6.
采用20 L球燃爆实验装置,研究分析了油气浓度、点燃延迟时间的变化对油气环境的爆炸影响因素及变化规律。研究表明,随着油气浓度的增加,油气最大爆炸压力呈现先上升后下降的趋势,点燃延时影响油气-空气混合物爆炸强度,超过一定时间后爆炸猛烈程度降低。  相似文献   

7.
为了研究墨粉在爆炸泄压过程中燃烧与流动的变化机制,通过改变泄爆片尺寸、墨粉浓度以及泄爆片的惯性力等参数对爆炸泄放过程中反应釜中压力以及外场火焰形态变化进行试验研究,同时与完全封闭空间内不同墨粉浓度的压力曲线对比。研究结果表明:相同泄爆开口尺寸下,粉尘浓度与受控爆炸压力(采用爆炸泄压保护措施后工业腔体内产生的压力)负相关;开口尺寸增加可以提升泄压效率;结合外场火焰形态的变化情况揭示声动火焰不稳定性对反应釜中压力发展的影响;通过无惯性泄爆试验的对比证明泄爆片惯性对受控爆炸压力的影响不可忽视。  相似文献   

8.
对连通容器内预混气体爆炸过程进行实验研究,具有重要的科研和实用价值.本文通过实验室内自制的实验仪器,详细研究了不同的点火位置、初始压力、初始浓度对连通容器内预混气体爆炸压力的影响.得出了在大容器中点火,会引起更大的爆炸压力.压力上升速率也增大很快;初始浓度对连通容器内预混气体爆炸的影响基本与单个容器中的影响一致.当初始压力增大时,连通容器的爆炸压力也随着一起增大,而且小容器比大容器增加更快.因而,在工业中,最有效的方法是隔爆,在容器和管道接口设置隔离装置,使爆炸不能通过管道传播.  相似文献   

9.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。  相似文献   

10.
管道燃气爆炸特性实验研究   总被引:5,自引:3,他引:2  
管道是化工及油气储运系统的重要组成部分,却时常受燃烧爆炸事故的威胁,因此对管道中燃气燃烧爆炸特性与规律的研究就十分必要。以甲烷作为研究对象,采用压力传感器以及火焰传感器等对水平封闭管道内甲烷-空气预混燃烧爆炸进行了实验研究,通过大量实验来研究可燃气体爆炸压力与火焰及其传播变化规律。根据实验结果将超压以及气体燃烧的变化情况,对前驱冲击波与火焰面的相对时间及相对位置关系进行了分析。结果显示,管道中会产生前驱压力波,并超前火焰阵面甲烷气体在管道传播过程中,出现冲击波反压射、波叠加及反冲现象,压力的持续时间较火焰光信号持续时间长。所做的工作为油气受限空间中燃气燃烧爆炸特性与规律的进一步研究及工业防爆抑爆技术及工艺的实施、系统设计以及关键参数计算提供了理论依据。  相似文献   

11.
为研究综合管廊燃气舱燃气爆炸冲击波的传播特征,采用数值模拟方法研究首次超压峰值和首次流速峰值的变化规律,建立首次流速峰值与首次超压峰值和填充长度的耦合关系,分析不同填充长度情况下燃气爆炸后的超压和水平流速的变化规律。结果表明:燃气爆炸后,燃气舱内存在多个超压峰值,峰值间存在明显的时间差。冲击波到达各测点的时间与燃气填充长度成反比关系。水平流速曲线随着时间的变化以0为基点上下振荡,存在正向峰值和反向峰值。随着燃气填充长度的增加,流速下降趋势变快。首次超压峰值随传播距离的增加先增大后减小再增大,随着填充长度的增加,产生超压峰值最大值的位置由接近填充长度结束的位置转移到燃气舱封闭端。首次流速峰值随传播距离的增加先增大后减小。首次流速峰值与首次超压峰值呈现正比关系,通过拟合得到流速峰值与超压峰值及填充长度的耦合关系。研究结果可为燃气舱燃气爆炸后的流速分布研究以及燃气舱防火分区的设计提供参考。  相似文献   

12.
针对非典型约束条件即底部端面梁固定约束、其他各端面梁连接约束的海洋平台关键舱室,其波纹板舱壁在油气爆炸载荷下抗爆能力研究不足,采用数值模拟方法,结合考虑材料应变率效应的实验验证,分析爆炸载荷下舱壁动力响应及破坏模式。由传统位移指标不能准确评估该模型的抗爆能力,提出基于应变的评价指标,以此建立P-I评估曲线。研究表明舱壁与底部端面梁连接部位首先达到最大破裂应变发生破裂,其为超压与冲量共同作用结果;舱室可抵抗超压40 kPa、冲量230 kPa·ms的载荷而不发生塑性变形;舱室可抵抗超压85 kPa、冲量400 kPa·ms的载荷而不发生破裂。提出的以应变为指标的P-I曲线可量化舱壁损伤评估区间,结合爆炸载荷值,准确评估舱壁抗爆能力及损伤大小,为工程人员优化舱壁抗爆能力、确定灾后控制措施提供指导。  相似文献   

13.
为研究挡气板对综合管廊燃气舱爆炸冲击波传播影响规律,采用Fluent模拟软件,研究三维燃气舱模型中不同挡气板间距下燃气爆炸后超压变化规律,探究不同间距挡气板对抑制燃气舱内爆炸冲击波传播效果.结果表明:挡气板对燃气舱中部超压影响较小,对顶部超压变化影响较大,导致燃气舱顶部挡气板处超压峰值激增;当气体填充区长20 m,挡气...  相似文献   

14.
利用FLACS软件分析初始压力、初始温度对CH4/CO2/air混合气的爆炸温度、最大爆炸压力的影响;并与计算值对比。结果表明:①初始压力对爆炸温度、爆炸前后压力比影响可以忽略。常温变压条件下二氧化碳浓度增加,爆炸温度与爆炸前后压力比基本呈线性降低。常压变温条件较复杂,二氧化碳浓度升高爆炸温度降低;初始温度对低浓度(<15%)二氧化碳混合气爆炸温度几乎没有影响,而高浓度(>15%)二氧化碳混合气爆炸温度随初始温度增加而升高;最大爆炸压力随二氧化碳浓度以及温度升高而降低。②在设定条件下,低浓度(5%~10%)二氧化碳混合气爆炸温度计算值与模拟值相对误差小于5.5%,吻合较好;最大爆炸压力计算值与模拟值相对误差在6.5%~10.5%之间。  相似文献   

15.
研究了环境温度对萘酐(C10H6O2)粉尘爆炸参数的影响,得到了随着温度的升高,最大爆炸压力峰值变化不大;而最大压力上升速率增大,爆炸下限浓度降低,安全氧含量也会降低.根据化学动力学理论对这一影响进行了分析.  相似文献   

16.
分析总结了氧气钢瓶物理爆炸和化学爆炸的原因。针对2009年某市发生的一起氧气瓶内含油脂爆炸事故,系统分析了国内曾经发生的几次因油脂导致气瓶爆炸事故。油脂进入到氧气瓶内大都是由于误操作。油脂与高压纯氧接触会发生剧烈的自燃氧化放热,使瓶内的氧气迅速升温升压,超出气瓶承压极限导致爆炸破裂。分析比较发现由油脂导致的气瓶爆炸,其破坏程度不如混入可燃气体导致的气瓶爆炸剧烈,一般不是粉碎性爆炸。在正常的充氧过程中,氧气瓶温度会升高,采用变质量热力学中的方法,计算说明气瓶在充装过程中氧气温度的具体变化。充氧温度计算为充氧工作人员提供参考,如发现异常情况,可以及时地控制和预防。由现场压力表可知氧气瓶在充装至12MPa时发生爆炸,而氧气瓶最小爆炸压力为37.6MPa,油脂燃烧放热,计算可知致使钢瓶爆炸破裂所需要的最小油脂量,为66.4-79.6g。不同的充装压力下发生爆炸,所需要的最小油脂量不同,充装压力越高,爆炸所需要的最小油脂量越少。  相似文献   

17.
为了研究大尺寸通风管网中的瓦斯爆炸传播规律,采用数值模拟方法,针对具有不同障碍物数量的大尺寸通风管网模型,利用Fluent分析管网中各个监测点的超压变化曲线以及障碍物附近的速度矢量图,分析爆炸冲击波传播规律。研究结果表明:初期瓦斯爆炸后,障碍物的存在改变了通风管网内未燃瓦斯的积聚区域;高温和高压发生耦合作用,在氧气相对充足的进气管道中形成二次爆炸;障碍物与火焰波以及管网自身结构变化等多种因素形成复合作用,改变了通风管网内瓦斯爆炸冲击波的传播路径和叠加区域的位置;无障碍物时高压区域出现在进气管道中,有障碍物时高压区域出现在中部直管与斜管的交汇处附近,且数值相对较大。  相似文献   

18.
工业生产中爆炸事故往往是由多元可燃气体与空气混合后遇到明火而引起的,为研究乙烷(C2H6)、乙烯(C2H4)、一氧化碳(CO)、氢气(H2)对甲烷爆炸特性的影响,选取多组分可燃气体甲烷爆炸压力特性和自由基发射光谱的影响进行研究,利用陕西省工业过程安全与应急救援工程技术研究中心重点实验室搭建的多功能球形气体/粉尘爆炸实验装置和单色仪进行爆炸实验测试,同步采集时间—压力曲线、中间产物(OH,CH2O)的发射光谱信号,考察多组分可燃气体浓度对甲烷爆炸压力特性和中间产物的影响。结果表明:在富氧状态下,多组分可燃气体加剧了甲烷—空气混合体系的爆炸剧烈程度,随着体系中氧气含量的减少、由富氧状态变为贫氧状态、促进作用逐渐减弱转变为阻尼作用,爆炸压力特性与中间产物发射光谱参数的影响规律基本保持一致,均呈高度正相关;多元混合体系爆炸剧烈程度越大,自由基发射光谱达到峰值的速度越快,自由基更早、更快的积累是加剧爆炸程度的原因之一。  相似文献   

19.
为避免因火区封闭导致重大安全事故发生,通过采集某矿井1 d内3个不同监测点的大气压力变化情况,建立大气压力波动模型并分析计算,同时建立火区内外压差100,750 Pa情形下的氧浓度模型进而获得火区内侧氧气浓度因呼吸效应,在不同压差、体积大小火区、风阻、瓦斯涌出量、封闭时刻等多因素耦合影响下随时间的变化规律,以评估火区危险性。研究结果表明:井下大气随地面大气周期波动,封闭火区内、外侧之间的气压差因外界大气波动呈现16 h的余弦波动和8 h的线性波动周期变化;密闭质量好的火区具有更好地抗干扰性,内侧氧浓度的降低主要依靠瓦斯稀释;密闭质量差的火区,内侧氧浓度易受到火区涌出瓦斯、外界涌入大气双重影响;火区氧浓度在2%~12%之间波动,以至火区存在发生瓦斯爆炸的可能性;火区内外压差较大时,氧浓度波动变化幅度更大,危险作用持续时间更长。结合火区氧浓度波动模型,可有效地对矿井火区采取安全的防范措施,避免瓦斯爆炸事故发生。  相似文献   

20.
为了研究富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响,基于自主设计搭建的CH4燃烧诱导快速相变试验台,通过改变富氧系数和泄爆面积对CH4燃烧的压力振荡特性进行研究,分析了不同富氧系数E(0.21,0.3,0.4,0.6)及泄爆面积比(0,0.25,0.5,0.75,1)下CH4燃烧的压力峰值、到达压力峰值的时间及特征时间等参数的变化趋势。结果表明,随富氧系数增大,爆炸压力峰值逐渐增大。富氧系数E=0.21时,压力峰值低于相应的绝热压力,无压力振荡;当E=0.3时,压力峰值低于相应的绝热压力且伴随压力振荡。当E为0.4、0.6时,压力峰值高于相应绝热压力且伴随压力振荡;在泄爆条件下,随富氧系数增加,到达压力峰值的时间逐渐减小。通过分析不锈钢管道中的燃烧诱导快速相变现象,发现泄爆可以有效降低爆炸压力峰值,且随泄爆面积比增大,到达压力峰值的时间提前。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号