首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以乙酸钠和丙酸钠1:2混合作为碳源,进水COD浓度分别为200,400,600,800mg/L,研究混合碳源浓度对单级好氧生物脱氮除磷的影响,并通过比较微生物体内储能物质的变化,探讨混合碳源浓度对生物脱氮除磷性能影响的机理.结果表明,当进水磷和氨氮浓度分别为12,30mg/L时,随着进水COD由200增加至800mg/L,磷去除率由39.9%提升至86.4%(氮去除率从13.5%提升至96.4%).进水COD为400mg/L时单位挥发性悬浮固体(VSS)的磷和氮去除量达到最高[分别为(4.31±0.08)和(6.15±0.22)mg/g].当进水COD由200增加至400mg/L时生物除磷活性增强,而COD继续增加会使污泥沉降性能变差,脱氮除磷生物活性降低.好氧吸磷和同步硝化反硝化主要由微生物体内储能物质多β羟基烷酸盐(PHA)驱动,当进水COD为400mg/L时单位VSS消耗的PHA最多.混合碳源浓度通过影响碳源的好氧代谢,使微生物体内储能物质的积累/转化量不同,进而影响系统的脱氮除磷性能.  相似文献   

2.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:5,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

3.
孙洪伟  郭英  彭永臻 《环境科学》2014,35(1):221-226
以实际高氨氮垃圾渗滤液为研究对象,考察了单级UASB-SBR生化系统除有机物和脱氮特性,重点研究了常、低温条件下,该生化系统生物脱氮的长期稳定性.623 d的实验结果表明,基于UASB反应器内高效的反硝化和厌氧产甲烷联合去除机制,以及SBR反应器内几乎100%的硝化和反硝化,在进水COD浓度为1 000~13 800 mg·L-1条件下,最终出水COD浓度为150~1 234 mg·L-1,在进水NH+4-N浓度为574~2 360 mg·L-1条件下,最终出水NH+4-N小于10 mg·L-1,平均去除率分别在90%和98%以上,尤其是获得了99.2%的TN去除率,出水TN小于30 mg·L-1,实现垃圾渗滤液内有机物和氮的高效、深度去除.整个实验期间,SBR反应器实现并维持了稳定的生物硝化和反硝化,成功跨越2个冬季,15℃以下共计171 d,最低温度为10.2℃.  相似文献   

4.
为了探明反硝化脱氮除磷工艺的碳源利用特性,通过SBR工艺对反硝化聚磷菌进行驯化在不同碳源浓度下,研究了反硝化脱氮除磷过程中的碳源利用特性。结果表明,反硝化脱氮除磷系统在厌氧段碳源转化过程中有一个饱和碳源,该研究中系统MLSS为3 000 mg/L时厌氧阶段饱和碳源浓度为250 mg/L COD。厌氧段进水碳源浓度低于该系统饱和碳源时,缺氧段总氮、磷去除随着厌氧段进水碳源浓度提高而增加,当进水碳源浓度超过饱和碳源时,总氮去除随着碳源浓度提高而进一步提高,但总磷去除率下降。说明缺氧段胞外碳源对系统脱氮有促进作用,但对除磷有抑制作用。厌氧进水碳源浓度达到饱和碳源时系统除磷效果最好,且脱氮所需的碳源利用效率最高此时系统COD(m)/NO_3~-N(m)值为3.3左右。  相似文献   

5.
利用SBR反应器,通过在线pH曲线控制好氧-缺氧反应时间,成功实现了短程生物脱氮,并考察了分段进水条件下流量分配对SBR反应器运行性能及N2O产量的影响.结果表明,与原水分2次在不同阶段等量加入反应器的二段进水方式相比,原水分3次等量进入反应器的三段进水方式能够有效降低脱氮过程中外碳源投加量和氧化亚氮产量;氧化亚氮主要产生于硝化过程,反硝化过程能够将硝化阶段积累的N2O还原至N2.2次、3次等量进水条件下,生物短程脱氮过程中乙醇投加量分别为0.8和0.6 mL,N2O释放量分别为8.86和5.05 mg·L-1(以N计).硝化过程中NO-2-N的积累是导致系统N2O产生的主要原因.  相似文献   

6.
进水C/N对A~2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧与生物接触氧化工艺组成的双污泥系统(A~2/O-BCO)处理实际生活污水.通过投加乙酸钠调节进水碳氮比(C/N=2.44~8.85),考察了系统的反硝化除磷特性.试验结果表明:进水有机物主要是通过改变硝化性能(即缺氧段反硝化负荷)以及聚-β-羟基链烷酸脂(PHA)的贮存和利用,进而影响系统的脱氮除磷效果.当进水C/N为4~5时,COD、TN和PO_4~(3-)-P去除率分别达到88%,80%和96%,实现了有机物、氮和磷的同步高效去除.碳平衡分析表明,A~2/O反应器去除的COD占去除总量的71.86%~77.28%,BCO反应器去除的COD仅占2%~12%,碳源的高效利用是A~2/O-BCO工艺在低C/N条件下实现深度脱氮除磷的重要原因.此外,通过进水C/N与曝气量、硝化液回流比、厌/缺氧反应时间等相关性的分析,提出了系统的优化运行策略.  相似文献   

7.
对交替好氧 缺氧短程硝化反硝化生物脱氮工艺中曝气和搅拌时间的控制模式进一步研究 .结果表明 ,ORP(氧化还原电位 )和pH的一阶和二阶导数变化可以作为控制交替好氧和缺氧运行方式的过程控制参数 .在此基础上 ,建立了控制交替好氧和缺氧时间的过程控制模式 .按照所建立的过程控制模式对进水COD、氨氮和总氮浓度分别为 194 5 5~ 92 4 90mg·L-1,2 5 6 8~ 81 4 8mg·L-1和 36 4 6~ 90 5 5mg·L-1.的废水实施交替好氧 缺氧控制 ,经过 2个月的运行 ,COD、氨氮和总氮的下降率和去除率仍然保持在 90 % ,99%和 92 % .因此 ,交替好氧 缺氧短程硝化反硝化生物脱氮工艺控制模式是可行的 ,它不但科学地分配了好氧和缺氧时间 ,提高了反应速率 ,而且为最终实现该工艺的模糊控制奠定了理论基础  相似文献   

8.
不同氮浓度冲击对颗粒污泥脱氮过程中N2 O产生量的影响   总被引:2,自引:2,他引:0  
韩雪  高大文 《环境科学》2013,34(1):204-208
采用好氧-缺氧SBR污水生物处理系统,考察不同进水NH4+-N浓度冲击对同步硝化反硝化型颗粒污泥脱氮过中N2O的释放规律和脱氮效果的影响.结果表明,当进水NH4+-N浓度分别从稳定的30 mg·L-1突然提高到40、60和80 mg·L-1时,氨氮去除率从80.04%降至61.40%、39.65%和31.02%,但氨氮的去除量变化不大,都在25 mg·L-1左右;另外,N2O产生量受进水NH4+-N冲击较小,在4个不同的进水NH4+-N浓度下,典型周期N2O产生量分别为3.019、3.489、3.271和3.490 mg·m-3,而且N2O释放速率都在0.004 5 mg·(m3·min)-1左右.同步硝化反硝化型颗粒污泥系统的好氧阶段和缺氧阶段均有N2O产生.不同的NH4+-N浓度冲击下,同步硝化反硝化型颗粒污泥系统对NH4+-N的去除量没有变化,但由于进水NH4+-N浓度的提高引起系统脱氮率显著下降.  相似文献   

9.
采用3种不同曝气模式的模拟氧化沟分别形成2、4、7个缺氧-好氧(A/O)分区,研究了3种工况下氧化沟的脱氮方式和脱氮效果.结果表明,在好氧缺氧区体积比例相同的条件下,A/O分区越多,则好氧区平均DO浓度越小,硝化菌活性越低,在2、7个4、A/O分区的3种工况下的硝化菌活性分别为4.80、和3.73mg·g·h4.65-1-1;A/O分区少,则每一分区的缺氧段和好氧段长,进水后反硝化菌利用的有机物就多,在好氧区中的有机物就少,用于硝化的DO量多,从而硝化和脱氮效果好.试验中3种工况的总氮平均去除率分别为60.14%、47.93%、57%,出水总氮平均浓度分别为17.01、22.17和27.92mg·L-1.在氧化沟工艺中,氮的去除途径主要是缺氧反硝化及同步硝化反硝化(SND).分区多,则主要通过同步硝化反硝化脱氮;分区少,则以缺氧反硝化脱氮为主,这是由于碳源限制致使同步硝化反硝化的脱氮效率比缺氧反硝化低.  相似文献   

10.
为分析CMICAO(多点交替进水阶式A2/O)工艺处理实际生活污水时对氮、磷的去除机理,基于物料衡算方程,计算各反应池内污染物质量浓度,并与实测值进行对比,分析氮、磷的去除途径,提出强化工艺脱氮除磷的方法.结果表明,试验条件下,出水中ρ(TP)、ρ(TN)和ρ(氨氮)分别为(0.41±0.08)、(10.24±0.40)和(2.07±0.30)mg/L.除微生物同化作用外,系统中的氮主要通过好氧硝化、缺氧/厌氧反硝化及SND(同步硝化反硝化)途径去除,阶段一3#反应池、阶段二2#反应池和阶段三1#反应池的SND率分别达到37%、52%和58%左右.磷通过聚磷菌厌氧/缺氧释磷、好氧吸磷和反硝化除磷途径去除,阶段一4#池的反硝化吸磷量达到3 mg/L左右.降低好氧池ρ(DO)和改变缺氧池与厌氧池的进水量比例可强化脱氮除磷效果.  相似文献   

11.
蚯蚓复合床渗滤系统去除污水中污染物的性能   总被引:2,自引:0,他引:2  
杨健  王夙  杨键  娄山杰 《环境科学学报》2008,28(10):2000-2005
设计了6个不同的装置,以添加蚯蚓的1*、2*、3*蚯蚓复合床装置为试验组,未添加蚯蚓的4*、5*、6*装置为对照组进行了55d的运行试验,试验期间水力负荷由0.5m·d-1升至1 m·d-1.试验结果显示,即使装置下部填料装填组合方式不同,添加蚯蚓的复合床渗滤系统出水COD基本维持在50mg·L-1以下,COD去除效果较好且保持稳定,受进水水质和水力负荷的影响较小.添加蚯蚓对系统的氨氮去除具有明显优势.但由于反硝化效果不好,TN去除率并不高.添加蚯蚓的系统对TP的去除没有明显优势,但保持良好的运行环境,有助于持续稳固的除磷.  相似文献   

12.
A~2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷   总被引:8,自引:0,他引:8  
以低C/N比实际生活污水为研究对象,重点考查了A2/O-曝气生物滤池生化系统的脱氮除磷特性.同时,考虑到A2/O工艺的主要功能是除磷及反硝化,而曝气生物滤池则以硝化为目的.因此,通过缩短A2/O的泥龄,可将硝化过程从A2/O中分离出去,让曝气生物滤池完成硝化,实现硝化菌和聚磷菌的分离,并解决了硝化菌和聚磷菌泥龄之间的矛盾.试验结果表明,该生化系统可实现有机物、氮和磷的同步去除.在平均C/N比为4.2,内回流比R为250%的条件下,平均进水COD、TN、TP分别为239.9、57.3和5.1mg·L-1,平均最终出水COD、TN、TP分别为34.1、13.3和0.1mg·L-1,去除率分别为85.8%、76.9%和98.3%.曝气生物滤池对氨氮几乎保持了100%的去除率.序批试验表明,反硝化聚磷菌占聚磷菌的比例为40.5%.  相似文献   

13.
乙酸钠为碳源时进水COD和总磷对生物除磷的影响   总被引:7,自引:4,他引:7  
阮文权  邹华  陈坚 《环境科学》2002,23(3):49-52
研究了乙酸钠为碳源时,乙酸盐和总磷浓度对循序间歇式生物除磷工艺运行效果的影响,以及含高浓度乙酸盐废水不能有效除磷的原因结果表明:COD<600mg·L-1时,随着COD/TP值的增大,总磷去除率提高,COD/TP<50时,磷的去除率提高显著,但当COD/TP>50时,磷的去除变化不大;进水乙酸盐浓度过高(COD>600mg·L-1)使除磷效率逐渐下降,COD>1000 mg·L-1会使生物除磷系统完全崩溃;研究发现除磷效率的下降是由于过多的乙酸盐从厌氧段进入了好氧段,引起丝状菌的增殖、污泥膨胀,导致聚磷菌被洗出.  相似文献   

14.
SBR双颗粒污泥系统脱氮除磷性能研究   总被引:2,自引:0,他引:2  
以模拟废水为研究对象,对SBR双颗粒污泥系统的脱氮除磷性能进行了考察.试验结果表明,A2N双颗粒污泥系统能使硝化菌和聚磷菌分别在各自最佳的环境中生长,有利于系统脱氮除磷的稳定和高效运行,可控制性也得到了提高.在COD为300 mg·L-1条件下,系统对COD的平均去除率达到78.8%,大部分COD被聚磷菌用来合成PHA;当溶解氧控制在3.55~4.90 mg·L-1和5.60~6.60 mg·L-1之间时,硝化SBR对氨氮的去除率分别为87.0%和94.5%.除磷SBR仅设置缺氧段时,磷去除率为72%;增设后曝气段后,磷去除率增至85%.NOx--N(NO2--N+ NO3--N)的去除主要发生在缺氧段,在反硝化除磷时作为电子受体被去除,平均去除率为90.6%.  相似文献   

15.
在OCO反应器的基础上改进得到了OGO反应器.在反应器改进前后脱氮除磷效能对比试验的基础上,进行了反应器水力特性的试验研究.城市污水对比试验研究结果表明,OGO工艺较改进前具有更为稳定、良好的生物同时脱氮除磷效果,工艺出水的平均值COD为22mg·L-1、NH4 -N为4.8mg·L-1、TN为11.2 mg·L-1、TP为0.80mg·L-1.反应器流态特征的试验结果表明,改进后形成的OGO反应器内,缺氧环区形成了良好的DO浓度梯度分布,且OGO反应器内推流流态所占比例从改进前的5.9%提高到改进后的12.9%,有效提高了反应器内推流流态的容积利用率和反应器效率.同时,反应器改进后能明显改善混合区水力条件,并有效避免了混合区内侧液流涡旋停滞造成的污泥沉积问题.  相似文献   

16.
邢晓琼  黄程兰  刘敏  陈滢 《环境科学》2012,33(11):3854-3858
含聚乙烯醇(PVA)工业废水可生化性较差,处理难度大,为了寻找经济合理、切实可行的处理技术,研究了臭氧氧化-活性污泥法对不同浓度含PVA实际工业废水的处理效果,并与传统活性污泥法进行了比较.结果表明,臭氧氧化-活性污泥法对COD<500 mg·L-1,PVA在10~30 mg·L-1范围的PVA废水处理效果与传统活性污泥法相比,相差不大,臭氧预处理效果不明显;对于COD在500~800 mg·L-1,PVA为15~60 mg·L-1的PVA废水处理效果明显,COD和PVA的平均去除率分别为92.8%和57.4%,比传统活性污泥法提高了4.1%和15.2%,出水COD在30~60 mg·L-1之间;对于COD为1 000~1 200mg·L-1,PVA在20~70 mg·L-1范围的PVA废水,臭氧氧化-活性污泥法处理效果显著,COD和PVA的平均去除率分别为90.9%和45.3%,比传统活性污泥法对COD和PVA的去除率分别提高了12.8%和12.1%,但是出水需要进一步处理才能达标排放.与传统活性污泥法相比,臭氧氧化-活性污泥法处理效率高,运行稳定,能有效地处理含PVA的工业废水.  相似文献   

17.
红色粘土对模拟及畜禽养殖废水中磷的去除   总被引:1,自引:0,他引:1  
为加强水污染控制及提高红色粘土的资源开发与利用,研究了3种红色粘土对模拟废水及畜禽养殖废水中磷的净化性能,并探讨了其吸附机理,继而分析了红色粘土在处理实际畜禽养殖废水中应用的可行性.结果显示,3种红色粘土对35mg.L-1模拟含磷废水中磷的去除率皆达到90%,对50mg.L-1模拟含磷废水中磷的去除率皆达到85%,均显著优于活性炭,其中R-3处理效果最佳.红色粘土中的氧化铁铝易与磷结合成铁磷、铝磷,且颗粒组成越小越有利于其对磷的吸附净化.经R-3和R-2处理含磷浓度为29.3mg.L-1的畜禽养殖废水,总磷浓度达到我国相应排放标准,而处理含磷浓度为93.7mg.L-1的畜禽养殖废水时,经R-2和R-3二次处理后可达到排放标准.综合分析表明,红色粘土可作为废水中磷的净化材料,尤其在处理畜禽养殖废水磷的方面具有良好的应用前景.  相似文献   

18.
钟晨宇  叶杰旭  李若愚  陈胜  孙德智 《环境科学》2012,33(12):4387-4392
为了研究硝酸盐对厌氧生物膜系统同时产甲烷反硝化反应的影响及其机制,拓展生物膜工艺在高氮有机废水中的应用,采用生物膜-污泥厌氧复合反应器和上流式厌氧污泥床培养具备同时产甲烷反硝化反应的功能微生物系统,并以间歇实验方法,对比研究硝酸盐对厌氧生物膜和颗粒污泥的同时产甲烷反硝化性能的影响.结果表明,硝酸盐对生物膜和颗粒污泥系统去除COD和反硝化反应均有影响,但硝酸盐浓度变化对颗粒污泥系统的影响比生物膜系统更大,生物膜表现出更强的降解能力和更高的耐性阈值.随着硝酸盐浓度从75 mg·L-1增加到600 mg·L-1,颗粒污泥对COD的降解速率从273.26mg·(h·g)-1降到0.1 mg·(h·g)-1,而生物膜从95 mg·(h·g)-1降至1.7 mg·(h·g)-1;同时,生物膜和颗粒污泥对硝酸盐的降解速率分别从21.43、22.31 mg·(h·g)-1增加到83.72、61.06 mg·(h·g)-1,随着硝酸盐的降解,生物膜表现出更强的恢复能力,最大值为712.44 mg·(h·g)-1.研究还发现亚硝酸盐积累是影响生物膜和颗粒污泥同时脱氮除碳功能的主要原因,在相同的硝酸盐浓度下,生物膜中亚硝酸盐的最大积累量仅为的颗粒污泥的1/10.因此,生物膜-污泥厌氧复合反应器可以作为高浓度含氮有机废水实现同时产甲烷反硝化工艺反应器一种重要选择.  相似文献   

19.
溶解氧对Biolak型A2O工艺脱氮除磷性能的影响   总被引:1,自引:0,他引:1  
通过对Biolak型A2O工艺处理生活污水工程应用的研究,考察了好氧段溶解氧(DO)浓度对该工艺脱氮除磷的影响.试验结果表明,DO浓度变化对系统COD、NH+4-N处理效果的影响不大,而对系统总氮及总磷的去除效果影响显著.当DO浓度控制在0.80~1.50 mg·L-1之间时,系统总氮去除效果最佳,可以达到69.5%,系统好氧段可实现同步硝化反硝化除氮.通过对系统氮进行物料衡算发现,23.7%的总氮通过好氧段多级A/O反硝化脱氮去除.当DO浓度为1.00~3.00 mg·L-1时,总磷(TP)去除率较高,可以达到74.0%.DO浓度控制在1.00~1.50 mg·L-1之间时,系统脱氮除磷效果最佳,此时TN、TP的去除率分别为68.9%、73.7%,二级生化处理段出水TN、TP分别为12.02、0.95 mg·L-1.  相似文献   

20.
利用固定化藻菌耦合系统同步去除污水中的COD和氮磷   总被引:1,自引:1,他引:0  
邓旭  魏斌  胡章立 《环境科学》2011,32(8):2311-2316
利用活性污泥和莱茵衣藻建立了一套固定化藻菌耦合系统同步去除污水中的COD和氮磷.系统污水日处理量为6 m3,水力停留时间为12 h.对于活性污泥部分,当厌氧槽搅拌转速为15 r.min-1,好氧槽DO值为5 mg.L-1时COD由150 mg.L-1左右降到50 mg.L-1,氨氮从20~30 mg.L-1降到0.5 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号