首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals show specific morphological, physiological and behavioural adaptations to diurnal or nocturnal activity. Cathemeral species, i.e. animals with activities distributed over the 24-h period, have to compromise between these specific adaptations. The driving evolutionary forces and the proximate costs and benefits of cathemerality are still poorly understood. Our goal was to evaluate the role of predator avoidance, food availability and diet quality in shaping cathemeral activity of arboreal mammals using a lemur species as an example. For this, two groups of collared lemurs, Eulemur collaris, were studied for 14 months in the littoral forest of southeastern Madagascar. Data on feeding behaviour were collected during all-day and all-night follows by direct observation. A phenological transect containing 78 plant species was established and monitored every 2 weeks to evaluate food availability during the study period. Characteristics of food items and animal nutritional intake were determined via biochemical analyses. The ratio of diurnal to nocturnal feeding was used as response variable in the analyses. The effects of abiotic environmental variables were removed statistically before the analyses of the biotic variables. We found that diurnal feeding lasted longer during the hot–wet season (December–February), whereas nocturnal feeding peaked during the hot–dry and cool–wet seasons (March–August). Although the lemurs foraged mostly in lower forest strata during daylight and used emergent trees preferably at night, the variables which measured animal exposure to birds of prey failed to predict the variation of the ratio of diurnal/nocturnal feeding. Ripe fruit availability and fiber intake are the two variables which best predicted the annual variation of the lemur diurnality. The data indicate that feeding over the whole 24-h cycle is advantageous during lean periods when animals have a fibre-rich, low-quality diet.  相似文献   

2.
The study of activity rhythms, their potential zeitgebers and masking factors among free-ranging primates has received relatively little attention in the past. Most primates are diurnal, a few of them nocturnal, and even fewer are cathemeral. Owl monkeys (Aotus azarai azarai) regularly show diurnal, as well as nocturnal, activity in the Argentinean and Paraguayan Chaco. The goal of this study was to examine how changes in activity patterns in owl monkeys of Formosa, Argentina are related to daily, monthly, and seasonal changes in temperature, light and food availability . During 1 year, I collected activity data from five groups followed continuously from dawn to dusk, dusk to dawn or uninterruptedly during 24 or 36 h for approximately 1,500 h. I kept hourly and daily records of temperature and light conditions, and I gathered monthly information on the density, distribution and abundance of food resources available to the monkeys. I found that the area of study is highly seasonal, and characterized by significant fluctuations in rainfall, temperature, photoperiod, and food availability. Owl monkeys had on average 5 h of activity during the day and 4 h during the night. The amount of diurnal activity remained fairly constant through the year despite seasonal changes in exogenous factors. Owl monkeys did not show changes in their activity patterns that could be attributed to changes in food availability. Nocturnal activity increased as the amount of moonlight increased, whereas diurnal activity decreased following a full-moon night. Ambient temperature was a good predictor of activity only when the moon was full. These results argue convincingly for an interaction between ambient temperature and moonlight in determining the observed activity pattern. It is then highly advisable that any evaluation of diurnal activity in cathemeral animals be analyzed controlling for the possible effects of moonlight during the previous night.Communicated by P. Kappeler  相似文献   

3.
During two field studies the macrofauna associated with wrack stranded on a tropical sandy shore was analysed. During the first period all animals present in small wrack deposits were randomly collected with cores. During the second field study active animals were sampled in larger wrack deposits for an entire lunar period, and tube traps were used. After a comparison between the two studies, only the data from the tube traps were examined from a temporal and spatial point of view. The aim of the present work was to gain information on how, when and where wrack was colonised by invertebrates, keeping in mind cyclical aspects such as lunar, diel and tidal phases. Predatory taxa, such as Staphylinoidea and the amphipods Talorchestia martensii, were most abundant, whereas Diptera larvae and Tenebrionidae were scarce. Successional changes of beach wrack colonisation were evident throughout a semi-lunar period, with molluscs invading wrack during the first days of deposition and histerids during the last ones. Strictly nocturnal or diurnal surface-active species were found to be active in the wrack during both the day and the night. The analysis of the tidal component of species activity in the wrack showed that some species moved at ebbing tide, and others moved at rising tide. Differences were found also in the mean hours of tidal activity, calculated separately during day and night periods. The study of the zonation of each species showed that in some cases wrack deposits were closely followed by the fauna as their position changed during the semi-lunar phase. In other cases differences occurred between species zonation during day and night periods and tidal phases. Cluster analysis indicates that most species exploit the wrack in different ways (as refuges and/or feeding site), both in space and in time. Received: 11 July 1999 / Accepted: 20 January 2000  相似文献   

4.
Madagascar is characterised by pronounced annual climatic and ecological seasonality and harbours a radiation of closely related sympatric primates (Lemuriformes) that exhibit diurnal, nocturnal and cathemeral activity patterns. We collected continuous activity data over a complete annual cycle from wild diurnal Verreauxs sifakas (Propithecus v. verreauxi) to contribute detailed and comparative data: (1) to characterise their diel and seasonal activity rhythms, (2) to identify factors shaping variation in activity rhythms, and (3) to help reconstruct the evolutionary transition from nocturnal to diurnal activity. We fitted eight adult sifakas from seven different groups living in Kirindy forest with an accelerometer/data logger device and recorded their activity in 5-min bins for a total of 12 months. We characterise P. verreauxi as a strictly diurnal species with a pronounced bimodal activity pattern that briefly changed to a more unimodal pattern during their annual mating season (January to March). We documented significant annual variation in total daily activity, activity time, and activity level, as well as in most parameters characterising their bimodal activity pattern. Despite a significant positive correlation of the animals activity time with day length, pronounced annual variation in the phase position of onset and end of activity in relation to sunrise and sunset times could also be discerned. Minor enhancing effects of moonlight on nocturnal activity were only found for the first 3 h of the inactivity period. Bimodality of the activity pattern and the additional reduction of activity time during the cold and dry winter months associated with reduced food availability can be interpreted as flexible behavioural adaptations to reduce energy expenditure. We therefore propose that energetic and thermoregulatory benefits are important factors shaping these primates activity pattern.Communicated by C. Nunn  相似文献   

5.
Few predators forage by both day and night. It remains unknown, however, how the costs and benefits of foraging or signaling are partitioned in animals that forage at all times. The orb-web spider Cyrtophora moluccensis is brightly colored and forages by day and night. We determined the benefits reaped when it forages by both day and night by estimating the biomass of prey caught in their webs. Additionally, we quantified whether the spider’s presence influences the number of prey caught by day and night and whether its colorful body is visible to diurnal and/or nocturnal insects using diurnal and nocturnal insect vision models. We found that approximately five times the biomass of prey was caught in C. moluccensis’ webs by night than by day. Hemipterans, hymenopterans, and dipterans were predominantly caught by day, while lepidopterans (moths) were predominately caught by night. Accordingly, we concluded that foraging by night is more profitable than foraging by day. We predicted that other benefits, for example, energetic advantages or enhanced fecundity, may promote its daytime activity. Foraging success was greater by day and night when the spider was present in the web than when the spider was absent. We also found that parts of the spider’s body were conspicuous to diurnal and nocturnal insects, possibly through different visual channels. The colorful body of C. moluccensis, accordingly, appears to influence its foraging success by attracting prey during both the day and night.  相似文献   

6.
The feeding activity rhythm of Palaemonetes varians (Leach 1814) was studied by collecting stomachs over a 24-h cycle in four different seasons of 1996 and spring–summer of 1997 to assess a regulation of this behaviur dependent upon seasonal variations in photoperiod length. A total of 6,692 stomachs were collected from a population reared in an extensive earthen pond located in the Guadalquivir Estuary salt marshes (Spain). Stomach fullness (f) classification was performed with a stereomicroscope by means of a four-point visual qualitative scale. Results showed that a high proportion of stomachs were empty in all seasons considered and a great variability in the data occurred irrespective of the time of the day. The number of full stomachs at each catch were represented over 24-h for each sampling season. Time series showed the occurrence of a feeding activity rhythm phased at day–night transitions. The sunset peak occurred in all months of sampling, while the sunrise one occurred in summer. Results are discussed in relation to available data on behavior, moulting, and reproduction of this and other species of the same genus.  相似文献   

7.
8.
Over a 24-h time scale, benthic decapods show complex patterns of behavioural activity associated with feeding. Information is scarce on the feeding rhythms of the burrowing decapod Nephrops norvegicus (L.), especially in those deep, benthic environments typical of western Mediterranean slopes, where the fishery of this species is highly developed. In the present study, the feeding of this species was determined by means of stomach sampling, from animals captured during four continuous 24-h cycles of trawl hauls at 100–110 m and 400–430 m, in October (the autumn equinox) and June (the spring solstice). A total of 3348 stomachs were analysed for fullness and classified by means of a visual, qualitative scale. A high proportion of the stomachs collected was empty (47.2%). Feeding rhythmicity was analysed by computing a percentage value of empty stomachs for each catch. Over 4 days, the percentage values presented marked fluctuations. Therefore, periodogram and form estimate analyses were performed on time series of percentages of empty stomachs, to determine the phase and periodicity of feeding rhythms. In October, animals ingested food during the daytime, presenting nocturnal peaks of empty stomachs at both depths considered in this study. In June, nocturnal peaks of empty stomachs were recorded for the slope, while a marked feeding arrhythmia was present on the shelf. A hypothesis linking feeding activity to endogenous rhythms in locomotion, cardiac and respiratory activities is presented to account for the animals diurnal ingestion, irrespective of the depth of distribution.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
Ecological information on coastal fish distribution patterns and habitat use can be greatly improved by nocturnal samplings and observations. To this purpose, the structure of a Mediterranean fish assemblage inhabiting the shallow rocky littoral of Linosa Island (Sicily Strait, Italy) was examined by using visual census to detect possible diel variations in species composition and abundance. Day–night fish distribution patterns were investigated by multivariate and univariate analyses. Overall, 42 fish taxa belonging to 19 families were recorded: 35 during the day and 24 during the night. Seventeen species were common to both diurnal and nocturnal assemblages. Within the diurnal assemblage, Chromis chromis was the most represented species (37.2%), followed by Thalassoma pavo (23.2%) and Sparisoma cretense (10.8%). Within the nocturnal assemblage, the most abundant taxon was Atherina spp. (33.9%), followed by Apogon imberbis (26.4%) and Boops boops (11.5%). Our results indicated wide variation in the abundance and species composition during the day and during the night. Multi Dimensional Scaling plot showed a clear-cut separation between the two assemblages and analysis of similarities found significant differences as well. SIMPER analysis revealed that ten species individually contributed by more than 2.5% to the dissimilarity between diurnal and nocturnal assemblages, T. pavo, C. chromis and S. cretense being the first three species in order of decreasing percentage. ANOVA performed on species richness and fish abundance detected significant differences between diurnal and nocturnal assemblages, the latter showing far lower average values for both variables.  相似文献   

10.
Gnathiid isopod larvae are members of the marine demersal zooplankton community and are common ectoparasites of coral reef fishes, emerging from the substratum, mostly at night and crepuscular periods to feed on fish blood. Given that the activity of many marine organisms is often linked to changes in the phase of the moon, we examined the relationship between lunar phase and activity in gnathiid isopods on Caribbean reefs. We employed two sampling methods to quantify gnathiid activity: (1) Emergence traps set on reefs over a 24 h period; and (2) live fish placed in cages on reefs and retrieved during night and dawn peaks in gnathiid activity. These were compared during discrete phases as well as a continuous metric, the lunar “angle”, and an estimate of ambient light availability (luminance). Lunar phase and angle varied in their statistical effect on gnathiid activity patterns by sampling method and/or year. Luminance had a significant but inconsistent effect on measures of gnathiid activity. Our results suggest that changes in the lunar cycle are not a strong predictor of gnathiid activity at our shallow reef study sites.  相似文献   

11.
Understanding concealment behaviour of marine animals is vital for population surveys and captive-release programmes. The commercially valuable sea cucumber Holothuria scabra Jaeger 1833 (Holothuroidea) can display a diel burying cycle, but is it widely predictable? Circadian burying of captive H. scabra juveniles, and both juveniles and adults in the wild, was examined in New Caledonia. Groups of ten cultured juveniles in mesh chambers in a tank were monitored for 24 h. Small juveniles (1–5 g) displayed an expected diel cycle of epibenthic foraging in the afternoon and night then burial in sediments in the morning. Burial was related significantly to both light and temperature in combination. Similar groups of juveniles were handled once or three times a day for 1 week then frequency of emergence during another week was compared to unhandled controls. Handling stress, whether occasional or frequent, significantly suppressed the frequency of their afternoon emergence from sediments for 4 days. In a coastal seagrass bed, burial and emergence of H. scabra were monitored during days of opposing tidal cycles in three seasons. Adults seldom buried during the day except in the cool season. At that site, most small hatchery-produced H. scabra juveniles were buried during most of the day, while larger juveniles showed little diurnal burying. This study underscores that the circadian behaviours of marine animals can exhibit substantial spatial variation, may be absent at certain sites or seasons, and can be mediated by a complexity of factors that vary over short timescales.  相似文献   

12.
Annual cycles in day length are an important consideration in any analysis of seasonal behaviour patterns, since they determine the period within which obligate diurnal or nocturnal animals must conduct all of their essential activities. As a consequence, seasonal variation in day length may represent an ecological constraint on behaviour, since short winter days restrict the length of the time available for foraging in diurnal species (with long summer days, and thus short nights, a potential constraint for nocturnal species). This paper examines monthly variation in activity patterns over a 4-year study of chacma baboons (Papio cynocephalus ursinus) at De Hoop Nature Reserve, South Africa. Time spent feeding, moving, grooming and resting are all significant positive functions of day length, even before chance events such as disease epidemics and climatically mediated home range shifts have been accounted for. These results provide strong support for the idea that day length acts as an ecological constraint by limiting the number of daylight hours and thus restricting the active period at certain times of year. Day length variation also has important implications across populations. Interpopulation variation in resting time, and non-foraging activity in general, is a positive function of latitude, with long summer days at temperate latitudes apparently producing an excess of time that cannot profitably be devoted to additional foraging or social activity. However, it is the short winter days that are probably of greatest importance, since diurnal animals must still fulfil their foraging requirements despite the restricted number of daylight hours and elevated thermoregulatory requirements at this time of year. Ultimately this serves to restrict the maximum ecologically tolerable group sizes of baboon populations with increasing distance from the equator. Seasonal variation in day length is thus an important ecological constraint on animal behaviour that has important implications both within and between populations, and future studies at non-equatorial latitudes must clearly be mindful of its importance.  相似文献   

13.
To elucidate the effects of light, site, temperature, time after emersion, and wind speed on foraging attempt rate (FAR) (attempts/unit time) and feeding success (FS) (captures/attempts) in the obligate visual foraging shorebird, Kentish plovers Charadrius alexandrinus, field observations were performed at a sandflat in Tokyo Bay, using a visible-light telescope camcorder during the day and a thermal infrared telescope camcorder at night. The re-analysis capability and frame-step replay of highly magnified video-images can contribute to accurate measurement of feeding behaviour over conventional focal observation techniques. Kentish plovers increased both FAR and FS in areas of high prey (polychaetes and crabs) density, resulting in a synergistic increase in feeding rate (captures/unit time). In areas of high prey abundance, FAR was higher at lower wind speed. FS increased with increasing time after emersion. Increasing temperatures induced a positive effect on FAR but a negative effect on FS. The effect of light on FAR was not observed; however, time-to-defecation occurrence was 2.2-fold shorter at night than during the day, indicating that feeding rate and FS are higher at night. These results are attributable to an increase in availability of cues due to higher nocturnal activity in polychaetes. Since available foraging time (emersion time) at night was 1.7-fold longer than during the day in the present study period, Kentish plovers could capture 3.7-fold (2.2 × 1.7) more prey at night than during the day. Results from this study indicate that nocturnal feeding in overwintering plovers is not a compensation but a major foraging activity to meet their energy requirements. An erratum to this article can be found at  相似文献   

14.
K. Oishi  M. Saigusa 《Marine Biology》1999,133(2):237-247
Temporal fluctuations of abundance (or emergence) in small benthic and planktonic crustaceans were studied in shallow subtidal waters (1.5 to 3.5 m in tide height). The abundances were more or less rhythmic, and showed wide diversity ranging from very clear nocturnal patterns to patterns in sychrony with the tidal cycle alone. These abundance patterns were classified into categories relating to the degree of synchrony with day/night and tidal cycles. Nocturnal patterns were especially strong in benthic crustaceans, which would be inactive during the daytime, being attached to algae and stones or disappearing into rock crevices, and actively swim in the water at night. Mysis larvae also showed a clear nocturnal pattern. Their lifestyle might be similar to that of many benthic animals. Other planktonic crustaceans drifting in the water showed weak nocturnal patterns. In some planktonic crustaceans (e.g., Calanoida), the ratio of abundance in the surface and bottom samples was reversed between day and night. Their pattern might be a manifestation of weak diel vertical movement between day and night. Furthermore, most patterns of zooplankton and benthos were modified in synchrony with tides to various degrees. Small crustaceans may respond to changes of hydrologic variables fluctuating with the tides, which may exogenously produce a weak tidal component in their emergence patterns. Received: 12 January 1998 / Accepted: 29 August 1998  相似文献   

15.
There is a large literature dealing with daily foraging routines of wild birds during the non-breeding season. While different laboratory studies have showed that some bird activity patterns are a persistent property of the circadian system, most of field studies preclude the potential role of an endogenous circadian rhythm in controlling bird’s foraging routines. In this study we compared the patterns of diurnal foraging activity and intake rates of migrating black-tailed godwits, Limosa limosa (radio-tagged and non-tagged individuals) at two stopover sites (habitats) with different environmental characteristics, aiming at identifying proximate factors of bird activity routines. To gain insights into the role of food availability in control of such foraging routines, we also estimated foraging activity patterns in captive godwits subjected to constant food availability. Captive and wild black-tailed godwits showed a persistent bimodal activity pattern through daylight period. Food availability had a significant effect on the intake rates, but had a subtler effect on foraging and intake rate rhythms. Temperature and wind speed (combined in a weather index) showed non-significant effects on both rhythms. Although we could not discard a role for natural diurnal changes in light intensity, an important timing cue, our findings support the idea that an endogenous circadian rhythm could be an important proximate factor regulating foraging activity and food items taken per unit time of wild black-tailed godwits during migration.  相似文献   

16.
N‐acetyltransferase (NAT) activity was determined in different ages of New Zealand White rabbit pineal gland using 2‐aminofluorene and p‐aminobenzoic acid as substrates and it was assayed by high pressure liquid chromatography. Rabbits of different ages were either sacrificed during the light phase, exposed to darkness or light for 1 min during the dark phase of the lighting cycle, returned to their cages in darkness for 30 min and then sacrificed. Pineal gland NAT activity in animal nocturnally exposed to 1 min of light was inhibited in animals 1 ‐day‐old of age. Nocturnal light exposure did not inhibit enzyme activity in 1‐day‐old rabbit, even though these animal displayed clear light : dark differences in pineal gland NAT activity. Nocturnal light exposure also did not inhibit night time levels of NAT activity in 1‐day‐old animals who had been bilaterally enucleated. The result suggested that this effect is retinally mediated. Pre‐treatment of 1‐day‐old and 60‐day‐old animals with the isoproterenol (beta‐noradrenoreceptor agonist drug), prevented the nocturnal light‐induced inhibition of NAT activity. The different sensitivity of 60‐day‐old and 1‐day‐old animals to different illuminances or durations of nocturnal light exposure, was that the duration or intensity of light exposure was enable to inhibit nocturnal NAT activity. The NAT activity was at least 3.2‐ to 4.6‐fold greater in 1‐day‐old rabbits compared to 60‐day‐old rabbits. Kinetic constants for arylamine NAT activity in pineal gland from rabbits were determined. Km and Fmax values for 2‐aminofluorene were 2.6‐fold higher for light exposure than for no light exposure rabbits. This is the first demonstration of the retina‐pineal gland pathway appears light‐induced changes in pineal glands of animals in 1‐day‐old of ages or older; but this pathway does not function in 60‐day‐old rabbits like manner in 1‐day‐old rabbits.  相似文献   

17.
To elucidate the effects of light, site, temperature, time after emersion, and wind speed on foraging attempt rate (FAR) (attempts/unit time) and feeding success (FS) (captures/attempts) in the obligate visual foraging shorebird, Kentish plovers Charadrius alexandrinus, field observations were performed at a sandflat in Tokyo Bay, using a visible-light telescope camcorder during the day and a thermal infrared telescope camcorder at night. The re-analysis capability and frame-step replay of highly magnified video-images can contribute to accurate measurement of feeding behaviour over conventional focal observation techniques. Kentish plovers increased both FAR and FS in areas of high prey (polychaetes and crabs) density, resulting in a synergistic increase in feeding rate (captures/unit time). In areas of high prey abundance, FAR was higher at lower wind speed. FS increased with increasing time after emersion. Increasing temperatures induced a positive effect on FAR but a negative effect on FS. The effect of light on FAR was not observed; however, time-to-defecation occurrence was 2.2-fold shorter at night than during the day, indicating that feeding rate and FS are higher at night. These results are attributable to an increase in availability of cues due to higher nocturnal activity in polychaetes. Since available foraging time (emersion time) at night was 1.7-fold longer than during the day in the present study period, Kentish plovers could capture 3.7-fold (2.2 × 1.7) more prey at night than during the day. Results from this study indicate that nocturnal feeding in overwintering plovers is not a compensation but a major foraging activity to meet their energy requirements.  相似文献   

18.
Time of departure and landing of nocturnal migrants are of great importance for understanding migratory strategy used by birds. It allows us to estimate flying time and hence the distance that migrants cover during a single night. In this paper, I studied the temporal schedule of nocturnal departures of European robins during spring migration. The study was done on the Courish Spit on the Baltic Sea in 1998–2003 by retrapping 51 ringed birds in high mist nets during nocturnal migratory departure. Take-offs of individual birds occurred between the first and tenth hour after sunset (median 176 min after sunset). Departure time was not related to fuel stores at arrival and departure, stopover duration and progress of the season. The results suggest that one reason for temporal variation in take-off time was differential response of European robins with high and low motivation to depart to such triggers as air pressure and its trend. If these parameters reach a certain minimum threshold shortly before sunset, robins with a high migratory motivation take off in the beginning of the night. When air pressure or its trend reaches a maximum, it may trigger to take off later during the night birds with lower initial motivation for departure, including those that have low refuelling efficiency. In regulation of timing of take-offs of robins, an important role is also played by their individual endogenous circadian rhythm of activity which is related to the environment in a complex way.  相似文献   

19.
Insect larvae increase in size with several orders of magnitude throughout development making them more conspicuous to visually hunting predators. This change in predation pressure is likely to impose selection on larval anti-predator behaviour and since the risk of detection is likely to decrease in darkness, the night may offer safer foraging opportunities to large individuals. However, forsaking day foraging reduces development rate and could be extra costly if prey are subjected to seasonal time stress. Here we test if size-dependent risk and time constraints on feeding affect the foraging–predation risk trade-off expressed by the use of the diurnal–nocturnal period. We exposed larvae of one seasonal and one non-seasonal butterfly to different levels of seasonal time stress and time for diurnal–nocturnal feeding by rearing them in two photoperiods. In both species, diurnal foraging ceased at large sizes while nocturnal foraging remained constant or increased, thus larvae showed ontogenetic shifts in behaviour. Short night lengths forced small individuals to take higher risks and forage more during daytime, postponing the shift to strict night foraging to later on in development. In the non-seasonal species, seasonal time stress had a small effect on development and the diurnal–nocturnal foraging mode. In contrast, in the seasonal species, time for pupation and the timing of the foraging shift were strongly affected. We argue that a large part of the observed variation in larval diurnal–nocturnal activity and resulting growth rates is explained by changes in the cost/benefit ratio of foraging mediated by size-dependent predation and time stress.  相似文献   

20.
Most migratory species migrate at night, and the benefits associated with nocturnal migration have been well reviewed; however, less attention has been paid to the benefits associated with diurnal migration. There are two theories for diurnal migration: (1) diurnal migration allows for the use of thermals and therefore reduces energy loss, and (2) the fly-and-forage hypothesis, which suggests that diurnal migrants can search for prey and forage as they migrate. We investigated whether American crows (Corvus brachyrhynchos) engage in the fly-and-forage strategy of diurnal migration as they migrated north in the spring. We tracked eight radio-tagged crows as they migrated hundreds of kilometers in the spring to determine if they were diurnal migrants, whether they migrated with conspecifics, whether they stopped to forage, and if they did stop, whether they forage with conspecifics. All crows migrated during the day, and while on several occasions crows were seen migrating in close association with conspecifics, all crows were also observed migrating alone. On average, crows migrated approximately 300 km the day they left their wintering grounds, and over the course of this day, they stopped twice and foraged at these locations for 35 min. On all but one occasion, the stops made during migration were to forage with groups of conspecifics. While the fly-and-forage hypothesis for diurnal migration has primary been applied to raptors, many diurnal migrants forage socially, and the presence of foraging conspecifics and/or heterospecifics may be a significant benefit in locating food resources and ultimately migrating during the day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号