首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


2.
3.
Objective: This study compared biomechanical responses of a normally seated Hybrid III dummy on conventional and all belts to seat (ABTS) seats in 40.2 km/h (25 mph) rear sled tests. It determined the difference in performance with modern (≥2000 MY) seats compared to older (<2000 MY) seats and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position. The testing included 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS seats. The dummy was fully instrumented, including head accelerations, upper and lower neck 6-axis load cells, chest acceleration, thoracic and lumbar spine load cells, and pelvis accelerations. The peak responses were normalized by injury assessment reference values (IARVs) to assess injury risks. Statistical analysis was conducted using Student's t test. High-speed video documented occupant kinematics.

Results: Biomechanical responses were lower with modern (≥2000 MY) seats than older (<2000 MY) designs. The lower neck extension moment was 32.5 ± 9.7% of IARV in modern seats compared to 62.8 ± 31.6% in older seats (P =.01). Overall, there was a 34% reduction in the comparable biomechanical responses with modern seats. Biomechanical responses were lower with modern seats than ABTS seats. The lower neck extension moment was 41.4 ± 7.8% with all MY ABTS seats compared to 32.5 ± 9.7% in modern seats (P =.07). Overall, the ABTS seats had 13% higher biomechanical responses than the modern seats.

Conclusions: Modern (≥2000 MY) design seats have lower biomechanical responses in 40.2 km/h rear sled tests than older (<2000 MY) designs and ABTS designs. The improved performance is consistent with an increase in seat strength combined with improved occupant kinematics through pocketing of the occupant into the seatback, higher and more forward head restraint, and other design changes. The methods and data presented here provide a basis for standardized testing of seats. However, a complete understanding of seat safety requires consideration of out-of-position (OOP) occupants in high-speed impacts and consideration of the much more common, low-speed rear impacts.  相似文献   


4.
5.
Purpose: This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats.

Methods: The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY).

Results: Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989–2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats.

Conclusions: Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700–3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.  相似文献   


6.
7.
Objective: This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts.

Methods: A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects.

Results: The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint–based and recliner stiffness–based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks.

Conclusion: As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.  相似文献   


8.
Objective: The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set.

Method: Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes―a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured).

Results: IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18–64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes.

Conclusions: The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.  相似文献   


9.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


10.
Objectives: This study set out to examine seat belt and child restraint use in the Dammam Municipality of the Kingdom of Saudi Arabia, based on the premise that an increase in seat belt use would significantly reduce personal injury in traffic crashes. It was expected that local data would help identify intervention strategies necessary to improve seat belt use in the region.

Methods: The research involved 2 methodologies. First, 1,389 face-to-face interviews were conducted with male and female adults in regional shopping plazas regarding their own and their children's restraint use in their vehicles and reasons for these attitudes and beliefs. Second, 2 on-road observation studies of adult and child restraint use were conducted by trained observers. Occupants of approximately 5,000 passenger vehicles were observed while stopped at representative signalized traffic intersections.

Results: The findings showed front seat belt use rates of between 43 and 47% for drivers and 26 to 30% for front seat passengers; rear seat belt use rates were lower. While there seemed to be some knowledge about the purpose and reasons for restraining both adults and children in suitable restraints, this failed to be confirmed in the on-road observations.

Conclusions: Reasons for these rates and findings are discussed fully, and recommendations for improving seat belt use in the Dammam Municipality are included.  相似文献   


11.
Introduction: Restraint systems (seat belts and airbags) are important tools that improve vehicle occupant safety during motor vehicle crashes (MVCs). We aimed to identify the pattern and impact of the utilization of passenger restraint systems on the outcomes of MVC victims in Qatar.

Methods: A retrospective study was conducted for all admitted patients who sustained MVC-related injuries between March 2011 and March 2014 inclusive.

Results: Out of 2,730 road traffic injury cases, 1,830 (67%) sustained MVC-related injuries, of whom 88% were young males, 70% were expatriates, and 53% were drivers. The use of seat belts and airbags was documented in 26 and 2.5% of cases, respectively. Unrestrained passengers had greater injury severity scores, longer hospital stays, and higher rates of pneumonia and mortality compared to restrained passengers (P = .001 for all). There were 311 (17%) ejected cases. Seat belt use was significantly lower and the mortality rate was 3-fold higher in the ejected group compared to the nonejected group (P = .001). The overall mortality was 8.3%. On multivariate regression analysis, predictors of not using a seat belt were being a front seat passenger, driver, or Qatari national and young age. Unrestrained males had a 3-fold increase in mortality in comparison to unrestrained females. The risk of severe injury (relative risk [RR] = 1.82, 95% confidence interval [CI], 1.49–2.26, P = .001) and death (RR = 4.13, 95% CI, 2.31–7.38, P = .001) was significantly greater among unrestrained passengers.

Conclusion: The nonuse of seat belts is associated with worse outcomes during MVCs in Qatar. Our study highlights the lower rate of seat belt compliance in young car occupants that results in more severe injuries, longer hospital stays, and higher mortality rates. Therefore, we recommend more effective seat belt awareness and education campaigns, the enforcement of current seat belt laws, their extension to all vehicle occupants, and the adoption of proven interventions that will assure sustained behavioral changes toward improvements in seat belt use in Qatar.  相似文献   


12.
Objective: Traffic injuries are becoming one of the most important challenges of public health systems. Because these injuries are mostly preventable, the aim of this study is to evaluate the four main high-risk behaviors while driving.

Methods: This cross-sectional study was conducted on a random sample from the population of Mashhad, Iran, in 2014. A checklist and a previously validated questionnaire for the transtheoretical stages of change model (TTM) were used for data collection. Statistical analyses were performed using SPSS 11.5 software with P <.05 statistically significant.

Results: Totally 431 individuals were included with a mean age of 30 ± 11.3 years. Forty-three percent (183) were male. The TTM model revealed that participants were mostly in pre-actional phases regarding not using a cell phone while driving (80%), fastening the driver's seat belt (66%), front seat belt (68%), and rear seat belt (85%) The penalty was a protective factor only for using cellphone (odd ratio [OR] = 0.82, 95% confidence interval [CI], 0.68–0.98). Lower education (OR = 0.12, 95% CI, 0.01–0.94) and male gender (OR = 0.35, 95% CI, 0.14–0.83) were indicative of lower rates of fastening the front and rear seat belts.

Conclusion: The stages of change model among study participants is a proper reflection of the effectiveness of the current policies. More serious actions regarding these high-risk behaviors should be considered in legislation.  相似文献   


13.
Background: State laws regarding child passenger protection vary substantially.

Objectives: The objective of this study was to develop a scoring system to rate child passenger safety laws relative to best practice recommendations for each age of child.

Methods: State child passenger safety and seat belt laws were retrieved from the LexisNexis database for the years 2002–2015. Text of the laws was reviewed and compared to current best practice recommendations for child occupant protection for each age of child.

Results: A 0–4 scale was developed to rate the strength of the state law relative to current best practice recommendations. A rating of 3 corresponds to a law that requires a restraint that is sufficient to meet best practice, and a rating of 4 is given to a law that specifies several options that would meet best practice. Scores of 0, 1, or 2 are given to laws requiring less than best practice to different degrees. The same scale is used for each age of child despite different restraint recommendations for each age. Legislation that receives a score of 3 requires rear-facing child restraints for children under age 2, forward-facing harnessed child restraints for children aged 2 to 4, booster seats for children 5 to 10, and primary enforcement of seat belt use in all positions for children aged 11–13. Legislation requiring use of a “child restraint system according to instructions” would receive a score of 1 for children under age 2 and a 2 for children aged 2–4 because it would allow premature use of a booster for children weighing more than 13.6 kg (30 lb).

Conclusions: The scoring system developed in this study can be used in mathematical models to predict how child passenger safety legislation affects child restraint practices.  相似文献   


14.
Objective: The objective of this article is to compare the performance of forward-facing child restraint systems (CRS) mounted on 2 different seats.

Methods: Two different anthropomorphic test device (ATD) sizes (P3 and P6), using the same child restraint system (a non-ISOFIX high-back booster seat), were exposed to the ECE R44 regulatory deceleration pulse in a deceleration sled. Two different seats (seat A, seat B) were used. Three repetitions per ATD and mounting seat were done, resulting in a total of 12 sled crashes. Dummy sensors measured the head tri-axial acceleration and angular rate and the thorax tri-axial acceleration, all acquired at 10,000 Hz. A high-speed video camera recorded the impact at 1,000 frames per second. The 3D kinematics of the head and torso of the ATDs were captured using a high-speed motion capture system (1,000 Hz). A pair-matched statistical analysis compared the outcomes of the tests using the 2 different seats.

Results: Statistically significant differences in the kinematic response of the ATDs associated with the type of seat were observed. The maximum 3 ms peak of the resultant head acceleration was higher on seat A for the P3 dummy (54.5 ± 1.9 g vs. 44.2 ± 0.5 g; P =.012) and for the P6 dummy (56.0 ± 0.8 g vs. 51.7 ± 1.2 g; P =.015). The peak belt force was higher on seat A than on seat B for the P3 dummy (5,488.0 ± 198.0 N vs. 4,160.6 ± 63.6 N; P =.008) and for the P6 dummy (7,014.0 ± 271.0 N vs. 5,719.3 ± 37.4 N; P =.015). The trajectory of the ATD head was different between the 2 seats in the sagittal, transverse, and frontal planes.

Conclusion: The results suggest that the overall response of the booster-seated occupant exposed to the same impact conditions was different depending on the seat used regardless of the size of the ATD. The differences observed in the response of the occupants between the 2 seats can be attributed to the differences in cushion stiffness, seat pan geometry, and belt geometry. However, these results were obtained for 2 particular seat models and a specific CRS and therefore cannot be directly extrapolated to the generality of vehicle seats and CRS.  相似文献   


15.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

16.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


17.
Objective: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data.

Method: We focus exclusively on vehicle–vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared.

Results: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80–1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76–1.65).

Conclusion: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.  相似文献   


18.
Objective: Thoracic side airbags (tSABs) deploy within close proximity to the occupant. Their primary purpose is to provide a protective cushion between the occupant and the intruding door. To date, various field studies investigating their injury mitigation has been limited and contradicting. The research develops efficacy estimations associated for seat-mounted tSABs in their ability to mitigate injury risk from the German collision environment.

Methods: A matched cohort study using German In-Depth Accident Study (GIDAS) data was implemented and aims to investigate the efficacy of seat-mounted tSAB units in preventing thoracic injury. Inclusion in the study required a nearside occupant involved in a lateral collision where the target vehicle exhibited a design year succeeding 1990. Collisions whereby a tSAB deployed were matched on a 1:n basis to collisions of similar severity where no airbag was available in the target vehicle. The outcome of interest was an incurred bodily or thoracic regional injury. Through conditional logistic regression, an estimated efficacy value for the deployed tSAB was determined.

Results: A total of 255 collisions with the deployed tSAB matched with 414 collisions where no tSAB was present. For the given sample, results indicated that the deployed tSAB was not able to provide an unequivocal benefit to the occupant thoracic region, because individuals exposed to the deployed tSAB were at equal risk of injury (Thorax Maximum Abbreviated Injury Scale (Tho.MAIS)2+ odds ratio [OR] = 1.04, 95% confidence interval [CI], 0.41–2.62; Tho.MAIS3+ OR = 1.15, 95% CI, 0.41–3.18). When attempting to isolate an effect for skeletal injuries, a similar result was obtained. Yet, when the tSAB was coupled with a head curtain airbag, a protective effect became apparent, most noticeable for head/face/neck (HFN) injuries (OR = 0.59, 95% CI, 0.21–1.65).

Conclusion: The reduction in occupant HFN injury risk associated with the coupled tSAB and curtain airbag may be attributable to its ability to provide coverage over previous mechanisms of injury. Yet, the sole presence of the tSAB showed no ability to provide additional benefit for the occupant's thoracic region. Future work should identify mechanisms of injury in tSAB cases and attempt to quantify improvements in the vehicle's ability to resist intrusion.  相似文献   


19.
Objective: This study was designed to evaluate the performance of a pelvic restraint cushion (PRC), a submarining countermeasure that deploys under the thighs when a crash is detected in order to block the forward motion of the pelvis.

Methods: Sled tests approximating low- and high-speed frontal impacts were conducted with 4 female postmortem human subjects (PMHS) restrained by a lap and shoulder belt in the right front passenger seat. The subjects were tested with and without a PRC.

Results: The PRC is effective in reducing forward motion of the PMHS pelvis and reduces the risk of injury due to lap belt loading in a high-speed frontal crash.

Conclusions: Although small sample size limits the utility of the study's findings, the results suggest that the PRC can limit pelvic forward motion and that pelvic injury due to PRC deployment is not likely.  相似文献   


20.
Objective: The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems.

Methods: Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters.

Results: Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes.

Conclusions: This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号