共查询到20条相似文献,搜索用时 15 毫秒
1.
Female Penaeus esculentus Haswell were collected by 15 to 20 min duration trawls during 1990. Carotenoids were analysed in the digestive gland, abdominal muscle, the remainder of the body (hereafter called integument) and ovary of prawns in Stage 2 through Stage 4 (fully mature) of maturation. The only oxycarotenoids (xanthophylls) identified were astaxanthins or astaxanthin esters; occasionally low levels of -carotene were detected in the digestive gland. The concentrations of astaxanthin monoesters (AM) and diesters (AD) were highest, with only minor amounts of free astaxanthins (Ast), except in the maturing ovaries, where free astaxanthins predominated (up to 80% of the total carotenoid). Of the total carotenoid, 82 to 94% was in the integument, but at maturity the digestive gland contained 10.7±3.4% and the ovary 5.6±0.9% of the total carotenoid. Only the ovary increased in mass during maturation, reaching up to 5.2% of total prawn mass. During this period, digestive gland concentrations of AM, AD and Ast all increased (tota 20 to 120 g g-1); levels in the muscle and integument varied little throughout maturation (total 0.4 and 100 g g-1, respectively); ovary AM levels remained low throughout (1.5 to 1.2 g g-1), AD increased from only 2 to 5 g g-1, but Ast increased from 2 to 34 g g-1. Apart from the ovary, AM concentrations were the most variable. In common with other decapod Crustacea, the maturing ovary of P. esculentus contained high levels of carotenoids, indicating that these may have an important role in early development. The natural diet of P. esculentus includes a variety of carotenoids, but except for a little -carotene, the digestive gland, where absorption occurs, contained astaxanthins, with only an occasional trace of -carotene. This suggests that the conversion of dietary carotenoids to astaxanthin occurs soon after ingestion. 相似文献
2.
The fatty acids (FA) in neutral lipid (NL) and polar lipid (PL) of digestive gland, muscle and integument of Penaeus esculentus Haswell were analysed and compared during the moulting cycle and during starvation. The prawns were collected from Moreton Bay, Queensland, Australia, by trawling during 1985–1987, and were fed with a standard semi-purified diet. Compared with a natural diet, the artificial diet had much higher levels of 18:1n-9 and 18:2n-6, but only trace amounts of 20:4n-6, but there was no evidence of dietary imbalance. The fatty acid composition (percentage of total lipid) of the digestive gland changed markedly during the moulting cycle and during starvation, but the small changes observed in both muscle and integument suggested that these tissues maintained their composition under both conditions. When the fatty acids were calculated as absolute amounts, muscle composition, as well as that of the digestive gland, changed significantly. In the digestive gland, saturated FA (SFA), monounsaturated FA (MUFA), diunsaturated FA (DUFA) and polyunsaturated FA (PUFA) all increased up to the middle of the moulting cycle and then declined; with starvation all groups decreased. In muscle, SFA, MUFA and DUFA all increased during the moulting cycle; starvation caused SFA, MUFA and PUFA to decrease, whereas DUFA did not vary. Starvation caused both 18:2n-6 (linoleic) and 18:3n-3 (linolenic) in the digestive gland to reach or almost reach zero. The other essential PUFA, 20:4n-6 (arachidonic), 20:5n-3 (eicosapentaenoic) and 22:6n-3 (docosahexaenoic), decreased during the moulting cycle, but during starvation 20:4n-6 did not decrease as much. In muscle, the levels of 18:2n-6 and 18:3n-3 increased, while 20:4n-6, 20:5n-3 and 22:6n-3 remained approximately constant during the moulting cycle. Starvation reduced 20:5n-3 and 22:6n-3 to about 60%. The data suggest that levels of 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3 are regulated, and that 20:4n-6 can be synthesised from 18:2n-6. There is no clear evidence that 20:5n-3 and 22:6n-3 are essential in P. esculentus, but tissue catabolism of cell membranes during starvation may have provided sufficient amounts for maintenance. 相似文献
3.
Robert D. Ward Jennifer R. Ovenden Jennifer R. S. Meadows Peter M. Grewe Sigrid A. Lehnert 《Marine Biology》2006,148(3):599-607
Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic
brown tiger prawn, Penaeus esculentus. Tests of Hardy–Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing
significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity,
and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of
Australia, showed barely detectable differentiation from Exmouth Gulf (F
ST = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F
ST = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were
well differentiated from the Gulf of Carpentaria/Moreton Bay (F
ST = 0.047–0.063). The data do not fit a simple isolation by distance model. It is postulated that the east–west differentiation
largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was
a land bridge between north-eastern Australia and New Guinea. 相似文献
4.
Lipid-class composition of organs and tissues of the tiger prawnPanaeus esculentus during the moulting cycle and during starvation 总被引:1,自引:1,他引:0
Neutral lipid and phospholipid fractions and their component lipid classes in the digestive gland, abdominal muscle, epidermis and cuticle ofPenaeus esculentus Haswell were analysed and compared during the moulting cycle and during starvation. The prawns were collected from Moreton Bay, Queensland, Australia, by trawling during 1985–1987, and were fed on a standard, semi-purified diet. The digestive gland appears to be a major site of lipid synthesis, storage and mobilisation in preparation for moulting. Neutral lipid, 59 to 80% of which was triacylglycerol, was the larger fraction. It accumulated during early premoult, mainly due to the increase in triacylglycerol. The digestive gland contained only 18% of the total body lipid, or 8% of body lipid as triacylglycerol. Thus, the reserve lipid available for energy production is very small. Digestive gland triacylglycerol was markedly depleted after 4 d starvation and was almost completely absent after 8 d. In the other tissues, the major fraction was phospholipid, of which over 50% was phosphatidylcholine and up to 20% phoshatidylethanolamine; cholesterol was the major class in the neutral lipid fraction and appeared to be very stable. Most of this lipid was probably a component of cellular membranes. The lipid composition of muscle changed very little during the moulting cycle: total lipid levels in the epidermis were high in late premoult and early postmoult, when new cuticle is being secreted, but the proportions of the component lipids were closely similar. Cuticle lipid, together with other major components, was resorbed from the old cuticle prior to ecdysis, but the cuticle phospholipids appeared to be labile at all moult stages. The total of all lipids in fedP. esculentus was about 3.6% dry weight, of which about 70% was phospholipid. Earlier research had shown that when digestive gland lipid is exhausted after a short period of starvation, muscle is metabolised for energy. The present research showed that in the remaining muscle only about 13% of lipid was lost after 21 d starvation, mostly as phosphatidylcholine. This is in keeping with the need to maintain this tissue in a functional state. In contrast, epidermal lipid levels were markedly reduced after only 4 d starvation and the proportions of phospholipids changed significantly. This sensitivity of the cuticle lipids to starvation may be the cause of delayed moulting, which is characteristic of poor nutrition. 相似文献
5.
The effect of molting on osmotic and chloride concentrations in the blood of the prawn Penaeus monodon Fabricius (20±3 g) at various salinities was investigated. Prawns were obtained from ponds in Iloilo, Philippines, in 1984. They were stocked in salinities of 8, 20, 32 and 44, and their hemolymph was sampled during molt (Time 0), and then 0.125, 0.25, 0.5, 1, 2, 4, 6, 10 and 14 d after molting. Prawns during and immediately after molt tended to conform to the environmental osmolality. Subsequent postmolt (0.5 d) stages displayed more divergence from external salinity. The isosmotic point was higher (940±30 mOsm kg-1) during molt than during intermolt (663±8 mOsm/kg-1), suggesting different osmotic requirements in early molt. Hyperregulation of hemolymph chloride below 20 S, as well as isoionic point (301±6 mM), were independent of molting stage. At 20 S and above, newly molted (0 to 0.25 d post-molt) individuals tended to conform to the external chloride concentration while intermolt (0.5 d) post-molt individuals did not. Contribution of hemolymph chloride to hemolymph osmolality was greater during intermolt than during ecdysis, suggesting an important role for other negatively charged ions during molt. When molt occurred in 20 S (the test salinity most similar to the isoionic salinity), there was little or no change in hemolymph osmolality or chloride concentration from 0 to 14 d postmolt. At 8, 32 and 44 S, the change from molt to intermolt values in hemolymph osmotic and chloride concentrations was hyperbolic. Non-linear least-squares regression showed that prawns generally achieved intermolt values within 1 d after molting. Prawns at intermolt regulated hemolymph osmolality (620 to 820 mOsm kg-1) and chloride concentration (300 to 450 mM) at a much narrower range than during molt (520 to 1 170 mOsm kg-1 and 250 to 520 mM, respectively). Hemolymph osmolality was a more sensitive indicator of physiological response than hemolymph chloride concentration. Distribution and culture of P. monodon might be limited in low salinities by its ability to maintain a hemolymph osmolality 500 mOsm kg-1 during molt and 600 mOsm kg-1 in intermolt, and in high salinities by its capacity to reduce the hemolymph osmolality from values at molt to those in intermolt. Osmotic and chloride concentrations in the blood of P. monodon clearly varied with both molt stage and salinity of the medium. Dependence on external factors, however, gradually declined in older molt stages, suggesting a reduction in integument permeability and greater development of ion absorption/secretion mechanisms as the exoskeleton hardened.SEAFDEC Contribution No. 197 相似文献
6.
Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers 总被引:3,自引:0,他引:3
We describe three highly polymorphic microsatellite loci which have been isolated from the giant tiger prawn Penaeus monodon. The number of alleles present among 312 samples at the loci Pmo9, Pmo25 and Pmo27 were 84, 34 and 35, respectively, with
heterozygosities all >90%. Analyses of the distribution of length variation at three microsatellite loci among five Australian
P. monodon populations revealed strong differentiation between populations from the west and those from the northern and eastern coasts.
Tests for population differentiation (F
st) values and an analogous measure for microsatellite loci (R
st) all demonstrated that Western Australian P. monodon are a separate genetic stock which exhibits reduced genetic variation relative to the other populations. Reduced variability
is consistent with a recent population bottleneck or colonization by a small founding population from the east when sea links
between Indonesia, New Guinea and Australia were re-established following the last ice age. The results of this study are
in agreement with previous surveys of P. monodon conducted with allozymes and mtDNA.
Received: 18 December 1998 / Accepted: 27 August 1999 相似文献
7.
The distribution and fate of14C-proline were investigated in immature tiger prawns,Penaeus esculentus Haswell, collected in Moreton Bay, Cleveland, Australia, by trawling during 1986/1987. Initially the prawns were fed14C-proline in food pellets to follow the pathway of proline absorption and distribution in the body.14C-proline was also injected directly into the prawn to provide sufficient tracer to follow the incorporation of14C into other amino acids and into proteins. A comparison was made of the metabolism of injected14C-proline over 48 h in prawns that had been fed and those that had been starved for 10 d. Free amino acids (FAA) in the muscle and protein-bound amino acids were analysed separately. Labelled proline was completely absorbed and distributed within the body 3 h after ingestion, about 80% being in the tissues, mostly in muscle. There was no significant difference between the total CO2 output in fed and starved prawns, but the latter metabolised about twice the amount of labelled proline over 48 h. At this time, in abdominal muscle of fed prawns, about 95% of the total muscle label was in the FAA; of the label in the FAA, 78% was proline and 18% glutamic acid, with the remainder in hydroxyproline, aspartic acid, glutamine, alanine and Kreb's cycle intermediates. In the starved prawns, proline was 58%, glutamic acid 24%, with correspondingly higher amounts in the other compounds. In the muscle protein, the distribution of label was similar in fed and starved prawns, with 72 to 74% as proline. The experiments showed that proline is not very labile in the tiger prawn and its rate of synthesis is slow. It does not appear to be an important source of energy as in some insects and cephalopods, but during starvation is only slowly oxidised for energy. 相似文献
8.
Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations 总被引:4,自引:0,他引:4
We examined the population structure of the black tiger prawn, Penaeus monodon Fabricius, 1798, in the Indo-West Pacific by analyzing the geographic distribution of elongation factor 1-alpha intron sequences from specimens collected during the winter and spring of 1997. Both the molecular phylogeny of alleles and
F-statistics indicated very strong differentiation between populations from the western Indian Ocean and western Pacific. This
pattern is concordant with other recent studies of marine species in this region, implying that the Indo-Australian Archipelago
represents a biogeographic break between populations in the Indo-West Pacific. F
ST-values among populations in the western Indian Ocean also indicate structure within this region, whereas no structure was
found among western Pacific populations. Nucleotide diversity was significantly lower in the western Indian Ocean populations
than in the western Pacific, implying that the populations have regional differences in demographic history.
Received: 16 November 1998 / Accepted: 26 May 1999 相似文献
9.
The variation in the concentration and fatty acid composition of lipid classes during the molting cycle of the prawn Penaeus japonicus was investigated. The lipid concentration of the whole body reached a maximum at mid-premolt (Stage D2) and then decreased to low level at late premolt (Stage D3–4). The accumulation of lipids during the premolt period seemed to be attributable to the increase of both polar and neutral lipids. The increase of neutral lipids at Stage D2 was derived from not only triglycerides but also free sterols and free fatty acids. Regarding the fatty acid composition of every lipid class, a marked variation occurred mainly at the intermolt (Stage C). In this stage, the polar lipids were rich in monoenoic acids such as 18:1 and poor in polyenoic acids such as 20:53 and 22:63. The triglycerides were rich in polyenoic acids at Stage C, but poor in monoenoic acids such as 16:1 and 18:1. The steryl esters contained large amounts of saturated acids such as 16:0 and 18:0 throughout the molting cycle, however the level of polyenoic acids increased at Stage C. 相似文献
10.
I. Yano 《Marine Biology》1988,99(4):547-553
Female kuruma prawns (Penaeus japonicus Bate) with undeveloped, early developing, developing, nearly ripe and ripe ovaries, were collected from Ise Bay, Japan, in 1984. Oocyte development of the kuruma prawn was classified into ten stages according to morphological characters, namely: (1) synapsis stage, (2) chromatin nucleolus stage, (3) early perinucleolus stage, (4) late perinucleolus stage, (5) oil globule Stage I, (6) oil globule Stage II, (7) yolkless stage, (8) yolk granule stage, (9) prematuration stage, and (10) maturation stage. The synapsis stage is a multiplication stage. The chromatin nucleolus stage, early and late perinucleolus stages are previtellogenesis and primary growth stages. Oil globule Stage I is an initial stage of primary vitellogenesis and secondary growth. Follicle cells on the oil globule Stage I oocytes expand rapidly and reach maximum size during oogenesis. Yolk granule stage oocytes are in the initial stages of secondary vitellogenesis. Strongly acidophilic yolk granules accumulate within basophilic vesicles of the cytoplasm. The yolk granules are first concentrated in the inner part of the cytoplasm, then gradually spread to the periphery. Cortical crypts, which are separated from the oocyte cytoplasm by the cytoplasmic membrane, are situated outside of oocyte cytoplasm. Germinal vesicle breakdown (GVBD) is initiated in the late phase of prematuration and continues until the late phase of maturation immediately prior to spawning. At the beginning of the maturation stage, the oocytes are ovulated, after which the nuclei further shrink and migrate out-wards. After ovulation, meiotic division of the ovarian oocyte progressed up to the metaphase of primary maturation division. Finally, the meiotic metaphase is visible just beneath the cytoplasmic membrane in the mature oocyte. Though ovulation is synchronous within the same ovary, GVBD is not completely synchronous. Ovulated mature oocytes have many club-shaped cortical crypts in the peripheral part of the cytoplasm and contain extensive accumulations of yolk granules dispersed throughout the cytoplasm. The apical end of the club-shaped cortical crypts and cytoplasmic membrane are coated by the vitellin envelope in the mature oocyte. 相似文献
11.
Specimens of Penaeus merguiensis de Man were captured between February and May 1981 from intertidal creeks and beaches of Cleveland Bay, Townsville, Australia, using a 15 m seine net. The statocyst of P. merguiensis resembles that of other macrurans in that it is a dorsal invagination of the basal antennular segment lined with groups of sensory hairs. The statolith is composed of sand grains implanted by the prawn from the substratum which must be done after every moult. Implantation begins within 90 min of ecdysis and has 3 phases: sifting; digging and finally eye withdrawal which pushes the sand grains into the statocyst chamber. 相似文献
12.
We evaluated the importance of seagrass and algae to two species of tiger prawns (Penaeus semisulcatus and P. esculentus) by detailed sampling at four sites (two seagrass, two algae) in the Embley River estuary, and through sampling 26 sites in 7 adjacent estuaries at one time of year. Samples of tiger prawns were collected in the Embley River estuary with a small beam trawl at night every 2 wk from September to May for 2 yr (1990 to 1992). The two seagrass sites, which were 11 and 13 km from the river mouth, showed less seasonal variation in salinity than the two algal sites, which were 15 and 20 km from the river mouth. The algal beds at the two upstream sites almost disappeared during the wet season, but the biomass of seagrass did not change significantly between the wet and dry seasons. The grooved tiger prawn (P. semisulcatus), the main species at all sites, comprised 88% of the total tiger prawn catch over the two years. They were found at all sites during the pre-wet season, but after the onset of the wet season, they disappeared along with the algae, from the upstream sites. The brown tiger prawn (P. esculentus) was found almost exclusively (97% of the total catch) on the seagrass sites downstream. In the study of several estuaries, juvenile P. semisulcatus were caught at all 26 sites, and P. esculentus were caught in much smaller numbers, at 16 sites. Approximately equal numbers of P. semisulcatus were caught in seagrass and algal beds in the pre-wet season. Very few individuals >10 mm carapace length of either species, were caught. The results from this study highlight the importance of algal beds during the pre-wet season as nursery areas for one species of tiger prawn (P. semisulcatus). 相似文献
13.
Prawns (Penaeus monodon) were obtained from ponds in Iloilo, Philippines, in 1984 and 1985 and maintained in salinities from 8 to 44. Total hemolymph calcium was largely affected by molt stage and less so by salinity. A sharp, transient increase in hemolymph calcium occurred 3 to 6 h postmolt, followed by an equally rapid decrease from 6 h postmolt to intermolt. This biphasis response was limited to prawns in 8, 20 and 32S; in 44S, hemolymph calcium remained the same throughout the sampling period. Peak concentrations of total calcium were greater in low (8 and 20S) than in high salinities. Salinity had no effect on the duration of molt cycle nor on time of occurrence of molt. Almost half of molting incidents occurred between 18.01 and 0.00 hrs, and one-third between 0.01 and 06.00 hrs. 相似文献
14.
In order to better formulate an artificial shrimp diet, the protein composition of shrimp was assessed and the essential amino acids determined. Penaeus aztecus were treated to remove lipids, carbohydrates and other interfering substances, and the protein was hydrolyzed to its constituent amino acids. The amino acids were then quantitatively analyzed by gasliquid chromatography as their trimethylsilyl derivatives. The essential amino acids were then determined. Shrimp were injected with 14C-labeled glucose and analyses performed to determine which amino acids then exhibited radioactivity, i.e., were synthesized from the labeled glucose. Those amino acids which were not manufactured from the glucose were categorized as essential. 相似文献
15.
E. Longmuir 《Marine Biology》1983,77(2):183-190
Specimens of juvenile Penaeus merguiensis de Man (1888) were captured by seine netting from the shores of Cleveland Bay, Townsville, Queensland Australia between February 1980 and November 1981. Accurate determination of moult cycle stage can be achieved rapidly by microsopical examination of setal development in an excised whole pleopod. Four major stages and 5 substages within premoult were clearly defined. The rate of setogenesis varies along the length of a pleopod, precluding the examination of only one specific location on the pleopod for accurate moult cycle staging. The process of ecdysis lasts for no more than 40 s. 相似文献
16.
Postlarval shrimp, Penaeus vannamei Boone, 1931, were held individually in cages and exposed to two feeding regimes. One group was starved for 12 d and then fed during the following 12 d. A second group was fed throughout the 24 d study. Four individuals were sampled from each of the two groups on Days 0, 1, 2, 4, 8, 12, 13, 14, 16, 20, and 24. Molting and growth among the starved-fed postlarvae stopped after 2 d starvation, while fed postlarvae increased significantly in size throughout the 24 d study. Among the starved-fed postlarvae, water content increased rapidly in response to starvation. DNA and sterol concentrations increased significantly during starvation due to selective catabolism of cellular components. After 12 d, RNA concentration was not significantly different between the fed and starved-fed postlarvae, but became significantly higher in the starved-fed postlarvae 48 h after feeding resumed. Triacylglycerol reserves were severely depleted during the first day of starvation, while protein concentrations began to decrease after the second day of starvation. RNA, protein, and the polyamines spermidine and spermine, when expressed as a ratio to DNA, decreased in response to starvation. Concentrations of all measured parameters in the starved-fed postlarvae returned to levels similar to those in the fed group 8 to 12 d after feeding resumed. Results of this study suggest that triacylglycerol provides energy during short periods of starvation, while protein is utilized during prolonged starvation. The ratios of RNA:DNA, protein:DNA, spermidine:DNA, spermine:DNA, two unidentified amine compounds, and percent water content are all useful indicators of prolonged nutritional stress in postlarval P. vannamei. 相似文献
17.
Fine mesh enclosures (0.9 m2 in basal area, 1 m high, with 100 µm mesh) and a jet-net retrieval system were developed to test the influence of juvenile prawn stocking density on growth rates in (1) different months (April and October/November) and (2) different types of intertidal seagrass beds in the Embley River estuary of tropical Australia. Small juvenile tiger prawns (3-6 mm in carapace length, CL) were stocked in enclosures at densities of 4-32 prawns per enclosure (4.4-35.5 prawns m-2) on a high biomass seagrass bed (about 70 g m-2 of mostly Enhalus acoroides) and one with low biomass (about 10 g m-2 of mostly Halodule uninervis). After 2-3 weeks in the enclosures, recovery rates, and hence possibly survival, were greater on the high biomass Enhalus than on the low biomass Halodule. However, not all fish and crustaceans could be excluded from the enclosures. Growth rates were twice as fast on the high biomass Enhalus than on the low biomass Halodule. It is likely that the high biomass Enhalus, with its greater surface area, supported more epiphytic flora and fauna and reduced the potential for interference competition between prawns, compared with the low biomass Halodule. Growth rates on Enhalus were significantly faster at a stocking density of 4 prawns per enclosure (1.3 mm CL week-1) than at a stocking density of 16 and 32 prawns per enclosure (both 0.8 mm CL week-1), and did not differ significantly between April and October/November (temperatures were about 30°C at both times). The mean growth rate at 8 prawns per enclosure (1.1 mm CL week-1) did not differ significantly from those at 4, 16 and 32 prawns per enclosure. These results from two seagrass beds suggest that the carrying capacity for juvenile tiger prawns was greater in the high biomass Enhalus than the low biomass Halodule bed. 相似文献
18.
Penaeus merguiensis de Man systematically searches the substratum and removes small particles of food from it using the small chelae of the first three pairs of pereiopods. One or more chelae are used to transfer food particles to the mouth. The propus and dactylus of these limbs bear numerous setae arranged in discrete groups along the length of the segments. The tip of each seta is elaborately sculptured and has a large sub-terminal pore. It is probable that these are chemosensory organs responsible for discriminating edible from non-edible material. Proximal to almost every setal group is a much-branched seta (rarely two) which probably measures the depth to which the chela has been inserted into the substratum. At the articulation of the propus and carpus of the first pereiopod are three groups of differently sculptured setae, whose function is to clean the other chelate pereiopods. An elaborate system of pegs and a ridge on the apposable fringes of the chelae might be a mechano-receptive device with a particle size discriminating function. The ridges merge into opposable terminal denticulate pads whose function is to grasp food and other particles, which may be quite small (10 to 20 m upwards). 相似文献
19.
The functions of the third maxilliped of Penaeus merguiensis de Man are described. It has a 6-segmented endopodite which is used in feeding, grooming and possible pheromone reception. In feeding, large pieces of food are gripped by the stout spines on inner borders of the ischia which hold them to the mouth so that particles can be torn off and ingested. All the distal segments have long setae used in grooming chelate pereiopods and the antennules. In mature males there is a tuft of about 300 slender setae at the end of the propus, but its function remains obscure. 相似文献
20.
The vertical distribution of chlorophylla, copepods, dissolved free amino acid concentration and the fixation of14C by phytoplankton were monitored in the springs of 1983, 1987 and 1988 in the Ushant front region, shelf edge of the Celtic Sea and central Irish Sea, respectively. In each area, two stations characterized by mixed and stratified water conditions were compared. Vertical distributions of amino acids coincided with the distribution of copepods. A positive and significant correlation was found between the abudance of copepods and the concentration of amino acids dissolved in seawater. A negative and significant correlation was found between chlorophylla and the concentration of amino acids. Enrichment of amino acids ( 20 to 500 nM l–1 at specific depths) due to aspartic and glutamic acids, glutamine and ornithine, was assumed to reflect copepod feeding activity and faecal production. At these depths, the natural concentration and diversity of amino acids, including aspartic acid, glutamic acid, asparagine, serine, histidine, glutamine, arginine, threonine, glycine, alanine, tyrosine, valine, phenylalanine, ornithine and lysine, were high enough and in the correct proportions for triggering feeding and swimming and swarming behavior of copepods, as well as their remote detection of food at the micro- and meso-scales (1 to 10 m). This accumulation of amino acids also constitutes a potential additional source of organic nitrogen for bacteria and phytoplankton. 相似文献