首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrialized waterways frequently contain nearshore hotspots of legacy polychlorinated biphenyl (PCB) contamination, with uncertain contribution to aquatic food web contamination. We evaluated the utility of estuarine forage fish as biosentinel indicators of local PCB contamination across multiple nearshore sites in San Francisco Bay. Topsmelt (Atherinops affinis) or Mississippi silverside (Menidia audens) contamination was compared between 12 targeted sites near historically polluted locations and 17 probabilistically chosen sites representative of ambient conditions. The average sum of 209 PCB congeners in fish from targeted stations (441 ± 432 ng g?1 wet weight, mean ± SD) was significantly higher than probabilistic stations (138 ± 94 ng g?1). Concentrations in both species were comparable to those of high lipid sport fish in the Bay, strongly correlated with spatial patterns in sediment contamination, and above selected literature thresholds for potential hazard to fish and wildlife. The highest concentrations were from targeted Central Bay locations, including Hunter’s Point Naval Shipyard (1347 ng g?1; topsmelt) and Stege Marsh (1337 ng g?1; silverside). Targeted sites exhibited increased abundance of lower chlorinated congeners, suggesting local source contributions, including Aroclor 1248. These findings indicate that current spatial patterns in PCB bioaccumulation correlate with historical sediment contamination due to industrial activity. They also demonstrate the utility of naturally occurring forage fish as biosentinels of localized PCB exposure.  相似文献   

2.
Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope (δ13C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation.  相似文献   

3.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

4.
This research investigated whether environmental conditions, biological fish characteristics and anthropogenic impacts influenced mercury (Hg) assimilation into the muscle tissue of two fish species from two Brazilian bays, Ilha Grande Bay and Guanabara Bay. Fish and superficial water were collected in different periods. Hg was determined by CV-AAS. Methylmercury (MeHg) was identified and quantified by ECD-GC. Chlorophyll a concentrations in the water column indicated that Ilha Grande Bay and Guanabara Bay were oligotrophic and eutrophic, respectively. Hg in fish ranged from 2.10 to 870.17 μg kg?1 dry wt. in Ilha Grande Bay and 40.90 to 809.24 μg kg?1 dry wt. in Guanabara Bay. Slight differences were found between the length-normalized Hg concentrations and its percent of Hg in a voracious predator from the bays. In Guanabara Bay, where the presence of a chlor-alkali plant causes Hg input, the iliophagous fish species showed the highest length-normalized Hg concentrations and the voracious predator the lowest. Iliophagous fish is consumed by voracious predator and, consequently, acts as their MeHg food supply. Iliophagous fish from Ilha Grande Bay presented a higher percent of MeHg (80.0 %) than specimens from Guanabara Bay (54.5 %). This fact suggests that more MeHg was transferred from iliophagous fish to voracious predator in Ilha Grande Bay. At Guanabara Bay, the bioproduction is greater than that at Ilha Grande Bay, presenting the highest biomass in it ecosystem, which may subsequently dilute Hg and reduce its availability to the biota; i.e., influencing in Hg and MeHg availability throughout the food chain. Consequently, more MeHg is available in the aquatic environment of Ilha Grande Bay.  相似文献   

5.
Liang P  Shao DD  Wu SC  Shi JB  Sun XL  Wu FY  Lo SC  Wang WX  Wong MH 《Chemosphere》2011,82(7):1038-1043
To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = −0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg−1 (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg−1 week−1, which was lower than the corresponding WHO limits (500 μg kg−1 and 1.6 μg kg−1 week−1).  相似文献   

6.
Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway.  相似文献   

7.
Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 ± 10.6 SE ng cm−2 yr−1 for THg and 3.8 ± 1.7 SE ng cm−2 yr−1 for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 ± 30 SE ng cm−2 yr−1). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations.  相似文献   

8.
Kim CK  Lee TW  Lee KT  Lee JH  Lee CB 《Chemosphere》2012,89(11):1360-1368
Mercury (Hg) concentrations were monitored in wild and cultured fish collected from fresh and coastal waters in the Korean peninsula from April 2006 to August 2008 nationwide. Total Hg concentrations were reported for 5043 fish samples, including 78 species from 133 locations. Significant interspecies variation was noted in the Hg levels. The average Hg concentration in each fish species ranged from 6.31 μg kg−1 for mullet (Mugil cephalus) to 200 μg kg−1 for mandarin fish (Siniperca scherzeri). Among the species collected, the maximum concentration of Hg, 1720 μg kg−1, was measured in an Amur catfish (Silurus asotus). Only wild freshwater fish exceeded the WHO ingestion standard. Wild freshwater piscivorous fish samples from a large artificial upstream lake contained the highest Hg levels. Hg concentrations were compared between fish groups categorized as wild and farmed fish from freshwater and coastal waters. Although the wild freshwater fish had similar size ranges, their Hg concentrations were higher than those of the other groups. Compared to the feed of farmed marine and freshwater fishes, the prey of wild freshwater fish had a higher Hg concentration, and the total Hg concentrations in freshwater and associated sediment samples were higher than those in coastal water and associated sediment samples. In the freshwater environment, piscivorous fish bioaccumulated two times more Hg than carnivorous and omnivorous fish and four times more than planktivorous fish. The difference in Hg concentrations among trophic groups might have been due to differences in the size of fish, in addition to the variations among different trophic groups. These data will be useful for developing the fish consumption advisory as a management measure to reduce Hg exposure.  相似文献   

9.
In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hgr) isolates and clone libraries. We observed up to 385 times higher numbers of Hgr bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hgr strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance.  相似文献   

10.

Purpose

Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption.

Methods

Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), ??13C and ??15N in the samples were measured.

Results and discussion

The signature for ??15N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the ??13C and ??15N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ??3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g?1) and MeHg (66 ng g?1), however, were lower than the guideline of 200 ng g?1 of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day?1 kg?1 body weight, respectively, was generally lower than the tolerable intake of 230 ng day?1 kg?1 body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the ??15N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems.

Conclusion

Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in the phytoplankton induced by eutrophication is a possible factor inhibiting accumulation of MeHg in fish in eutrophic Lake Taihu.  相似文献   

11.
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L−1). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L−1 but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.  相似文献   

12.
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3 ± 1.6 ng/g; flooded: 110 ± 9.2 ng/g) and MeHg (water-saving 1.3 ± 0.56 ng/g; flooded: 12 ± 2.4 ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r2 = 0.97, MeHg: r2 = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II).  相似文献   

13.
Although fish is a healthy alternative for meat, it can be a vehicle for mercury (Hg), including in its most toxic organic form, methylmercury (MeHg). The objective of the present study was to estimate the risk to human health caused by the consumption of sushi and sashimi as commercialized by Japanese food restaurants in the city of Campinas (SP, Brazil). The total Hg content was determined by atomic absorption spectrometry with thermal decomposition and amalgamation, and the MeHg content calculated considering that 90% of the total Hg is in the organic form. The health risk was estimated from the values for the provisional tolerable weekly ingestion (PTWI) by both adults and children. The mean concentrations for total Hg were: 147.99, 6.13, and 3.42 µg kg?1 in the tuna, kani, and salmon sushi samples, respectively, and 589.09, 85.09, and 11.38 µg kg?1 in the tuna, octopus and salmon sashimi samples, respectively. The tuna samples showed the highest Hg concentrations. One portion of tuna sashimi exceeded the PTWI value for MeHg established for children and adults. The estimate of risk for human health indicated that the level of toxicity depended on the type of fish and size of the portion consumed.  相似文献   

14.
Perfluorinated compounds (PFCs) were measured in zooplankton and five fish species collected from Gaobeidian Lake, which receives discharge from wastewater treatment plant (WWTP) in Beijing, China. The mean total PFCs in five fish were in the order: crucian carp > common carp > leather catfish > white semiknife carp > tilapia. Perfluorooctane sulfonate (PFOS) occurred at the greatest concentrations, with mean concentrations ranging from 5.74 to 64.2 ng/ml serum. Perfluorodecanoic acid (PFDA) was the second dominant PFC in fish samples except for common carp in which perfluorooctane sulfonamide (PFOSA) was dominant. A positive linear relationship (r2 = 0.85, p < 0.05) was observed between ln PFOS concentrations (ln ng/ml) and trophic level (based on δ15N) if tilapia was excluded. The risk assessment showed that PFOS might not pose an immediate risk to fish in Gaobeidian Lake.  相似文献   

15.
Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5-100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils.  相似文献   

16.
Mercury (Hg) contamination in piscivorous birds, especially methylmercury (MeHg), has been drawing much attention worldwide in regard to its bioaccumulation and biomagnification in food chains. In this study on Hg in the soft tissues of white-tailed eagles (n = 22) and ospreys (n = 2) from Poland, total Hg (THg) range was 0.15–47.6 while MeHg range was 0.11–8.05 mg kg−1 dry weight. In both species, median THg and MeHg concentrations were lower in the muscle and brain than in the liver and kidney. Median nephric residues were just under 3 and 5 mgTHg kg−1 or 0.9 and 3.7 mgMeHg kg−1 for white-tailed eagle and osprey, respectively. In Norwegian data from the 1970s and in our results, MeHg in the muscle of white-tailed eagle was ~60 % THg (%MeHg = MeHg/THg × 100), lower than in other piscivorous birds. A clear similarity in THg tissue levels was found between Polish and German populations of white-tailed eagles.  相似文献   

17.
Sulfate-reducing microorganisms (SRM) have been thought to play a key role in mercury (Hg) methylation in anoxic environments. The current study examined the linkage between SRM abundance and diversity and contents of methylmercury (MeHg) in paddy soils collected from a historical Hg mining area in China. Soil profile samples were collected from four sites over a distance gradient downstream the Hg mining operation. Results showed that MeHg content in the soil of each site significantly decreased with the extending distance away from Hg mine. Soil MeHg content was correlated positively with abundance of SRM and the contents of organic matter (OM), NH4 +, SO4 2?, and Hg. The abundances of SRM based on dissimilatory (bi) sulfite reductase (dsrAB) gene at 0–40 cm depths were higher than those at 40–80 cm depth at all sites. The SRM community composition varied in the soils of different sampling sites following terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses, which appeared to be correlated with contents of MeHg, OM, NH4 +, and SO4 2? through canonical correspondence analysis. The dominant groups of SRM in the soils examined belonged to Deltaproteobacteria and some unknown SRM clusters that could have potential for Hg methylation. These results advance our understanding of the relationship between SRM and methylmercury concentration in paddy soil.  相似文献   

18.
Ambient speciated mercury concentrations including total gaseous mercury (TGM), gaseous divalent mercury (Hg(II)), and particulate mercury (Hg(p)) were measured on the roof of the Graduate School of Public Health building in Seoul, Korea from February 2005 to February 2006. The average concentrations were 3.22 ± 2.10 ng m?3, 27.2 ± 19.3 pg m?3, and 23.9 ± 19.6 pg m?3 for TGM, Hg(II), and Hg(p), respectively. Hg(II) and Hg(p) concentrations were higher during the daytime than during the nighttime, probably because of high photochemical activity. Hg0 concentrations were not significantly correlated with ozone however a positive correlation between ozone and Hg(II) was found during periods of high humidity. Eighteen days were characterized as pollution events with 24 h average PM2.5 concentrations >65 μg m?3. The average concentrations of TGM and Hg(p) during these events were 1.4–2 times higher than those during non-pollution events. In order to identify the contribution of long-range transported mercury to the enhanced mercury concentrations in Korea, an episode was defined as a period with hourly average TGM and CO concentrations higher than the monthly average TGM and CO concentrations and with significant enhancement of both TGM and CO concentrations for at least 10 h. A total of 70 episodes were identified during the sampling period: 36 local episodes and 34 long-range transport episodes. The mean ΔTGM/ΔCO slope for all episodes was 0.0063 ng m?3 ppbv?1 which agreed well with the slope (0.0036–0.0074 ng m?3 ppbv?1) found in previous studies that identified long-range transport of TGM from China. The mean slope during non-events was 0.0011 ng m?3 ppbv?1. Back-trajectory analysis showed that during episodes, air parcels arrived mostly from the major industrial areas in China (n = 25, 73%), followed by Japan (n = 4, 12%), Yellow Sea (n = 3, 9%), and Russia (n = 2, 6%).  相似文献   

19.
From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km−2 for DF Reservoir, and 489.2 g km−2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km−2 yr−1, yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km−2 yr−1, yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs.  相似文献   

20.
Mercury, methyl-mercury (MeHg) and selenium were determined in digestive gland and mantle of Octopus vulgaris, from three areas of the Portuguese coast. To our knowledge these are the first data on MeHg in cephalopods. Concentrations were higher in the digestive gland and percentage of MeHg in mantle. Enhanced Hg and MeHg levels were obtained in digestive gland of specimens from Olhão (3.1-7.4 and 2.0-5.0 μg g−1, respectively). Differences between areas may be partially related to Hg availability. Relationships between concentrations in mantle and digestive gland pointed to proportional increases of Hg and MeHg in tissues of specimens from Matosinhos and Cascais, but relatively constant values in mantle of individuals from Olhão (higher contamination). Se:Hg molar ratio in digestive gland was 32 and 30 in octopus from Matosinhos and Cascais, respectively, and 5.4 from Olhão. The proximity to the unit suggests demethylation as response to elevated MeHg levels in digestive gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号