首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stomatal resistance, measured with a ventilated diffusion porometer at various times before, during, and after exposure to 20–25 pphm ozone, was followed in water-stressed or well-watered beans, beans exposed at either low (37%) or high (73%) atmospheric humidity, and two tobacco cultivars exposed at the same two humidities. The two tobacco cultivars that were compared were the 03-susceptible Bel W-3 and the 03-resistant Consolidated L. The stomata of the water-stressed but unwilted bean plants closed quickly from a resistance of 2.9 ± 0.3 sec/cm to 8.4 ± 1.0 sec/cm when exposed to O3 whereas those in the unstressed plants closed slowly from a resistance of 2.5 ± 0.6 sec/cm to 5.2 ± 0.8 sec/cm after exposure to O3 for 10 min. Exposure to 03 for 30 min in the moist atmosphere caused no change in stomatal resistance of the bean plants whereas in the dry atmosphere the stomata closed from a resistance of 3.7 ± 0.4 sec/cm to 6.7 ± 0.6 sec/cm, but opened again when ozonation was terminated. With tobacco exposed to O3 in a dry atmosphere the stomata of the 03-resistant cultivar closed more rapidly than the 03-susceptible variety, whereas in a moist atmosphere the stomata of both cultivars closed slowly and equally during the 60 min of ozonation.  相似文献   

2.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

3.
Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O3 damages, we hypothesized that soil salinization may increase O3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O3 (−33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m−1 reduced both stomatal conductance and plant O3 uptake, thus linearly reducing O3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O3 on crop yield should take into account soil salinity.  相似文献   

4.
Two bean cultivars with different sensitivity to ozone, i.e. the O3-sensitive Cannellino and the O3-tolerant Top Crop, were exposed to acute O3-stress (165 nL L−1) with the aim of evaluating physiological and biochemical traits that may confer O3-tolerance. Stomatal conductance was smaller and the ability to dissipate excess energy, via regulated and unregulated nonphotochemical quenching mechanisms was greater in Top Crop than in Cannellino. These morphological and physiological-traits allowed the O3-tolerant cultivar to compensate for the light-induced declines in ΦPSII, to preserve photosystem II from excitation-energy, and likely to prevent the generation of ROS to a superior degree than the O3-sensitive cultivar. Furthermore, the potential capacities to reducing the superoxide anion and H2O2 were significantly greater in Top Crop than in Cannellino. These findings are consistent with the early accumulation of H2O2, the almost complete disruption of cell structure, and irreversible damages to the photosynthetic apparatus observed in the O3-sensitive cultivar.  相似文献   

5.
Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/Ci measurements monthly during the 2004-2008 growing seasons. Our results suggest that the responses of two aspen clones differing in O3 sensitivity showed no evidence of photosynthetic and stomatal acclimation under either elevated CO2, O3 or CO2 + O3. Both clones 42E and 271 did not show photosynthetic nor stomatal acclimation under elevated CO2 and O3 after a decade of exposure. We found that the degree of increase or decrease in the photosynthesis and stomatal conductance varied significantly from day to day and from one season to another.  相似文献   

6.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   

7.
The antiozonant EDU (ethylenediurea) was used to assess the impact of ambient O3 under field conditions on five cultivars of tropical wheat (Triticum aestivum L.). EDU solution (0 ppm and 400 ppm) was applied as soil drench (100 ml plant?1) 10 days after germination (DAG) at an interval of 12 days. EDU-treated plants showed significant increments in stomatal conductance, photosynthetic rate, variable fluorescence, total chlorophyll, ascorbic acid, proline and protein contents and protective enzymes (POX, SOD and APX) activities in HUW468, HUW510 and HUW234 cultivars, while, a reverse trend was observed for lipid peroxidation. EDU application restored grain yield significantly by maintaining higher levels of antioxidants, metabolites and enzymes in cultivars HUW468 and HUW510. Sonalika and PBW343 showed least response of measured parameters under EDU treatment suggesting their greater resistance to O3. EDU, thus proved its usefulness in screening suitable wheat cultivars for areas experiencing elevated concentrations of O3.  相似文献   

8.
Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels.  相似文献   

9.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

10.
To clarify the effects of O3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O3. Although there was no significant effect of O3 on stomatal diffusive conductance to H2O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O3 may detrimentally affect wheat production in Bangladesh.  相似文献   

11.
Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s−1 and 0.36 cm s−1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s−1. In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation.  相似文献   

12.
Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 × ambient), O3 (1.2 × ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO2 and O3 increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO2. Cuticular ridges and epicuticular wax crystallites were less evident under CO2 and CO2 + O3. The increase in amorphous deposits, particularly under CO2 + O3, was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO2 + O3. The combination of elevated CO2 and O3 resulted in different responses than expected under exposure to CO2 or O3 alone.  相似文献   

13.
Mustafa SA  Davies SJ  Jha AN 《Chemosphere》2012,87(4):413-422
Hypoxic events frequently occur in the aquatic environment in association with micro pollutants, including heavy metals. Only a few studies are however available on the uptake and biological responses of heavy metals under hypoxic conditions. To elucidate the phenomenon, mirror carp Cyprinus carpio L. (16.13-16.22 g) were exposed chronically to dietary copper (Cu; 250 and 500 mg kg dry wt.−1) for 30 d under normoxic (8.25 mg O2 L−1) and hypoxic (∼3 mg O2 L−1) conditions and adopting an integrated approach, sub-lethal biomarker responses were determined at different levels of biological organisation. Level of oxidative DNA damage (as determined by modified Comet assay) showed strong significant difference following exposure to dietary Cu level under normoxic (1.6-fold) as well as under hypoxic condition at both Cu levels (2.1 and 2.5-folds respectively). Significant difference was also observed for haematological parameters (i.e. increased red and white blood cells, haematocrit value and haemoglobin concentration). Quantitative histology revealed alterations in tissues (i.e. liver and gills) for hypoxic and all dietary Cu treatment groups under both normoxic and hypoxic conditions suggesting a compensatory response to these organs (< 0.05). The order of Cu accumulation in tissues (as determined by ICP-OES) was liver > intestine > kidney > gill. Interestingly, SGR under both normoxic and hypoxic conditions reduced with elevating Cu levels (p = 0.019). Overall, the results provide evidence for enhanced toxicological responses in fish following exposure to Cu either alone or in combination with hypoxic condition and lends support to the evolving viewpoint that many water quality guidelines should be revisited in terms of new ecotoxicological criteria.  相似文献   

14.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

15.
In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (gst) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed gst variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed gst variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O3 flux modelling, in terms of predictive performance.  相似文献   

16.
Intraspecific variation in six cultivars of clover Trifolium alexandrinum L., (Bundel, Wardan, JHB-146, Saidi, Fahli, and Mescavi) has been studied with ambient and elevated O3 (ambient?+?10 ppb O3) in open top chambers. Significant effect of elevated O3 was detected on different morphological, physiological, and biochemical parameters depicting differential response among the test cultivars. Results showed that the magnitude of O3 induced foliar injury symptoms varied in all the cultivars. Ozone significantly depressed photosynthetic rate, stomatal conductance, and photosynthetic efficiency, although variations were cultivar specific. Ozone treatment diminished total biomass of all the cultivars; reduction was highest in Wardan with least O3 resistance followed by Bundel, JHB-146, Saidi, Mescavi, and Fahli. According to the cumulative sensitive index, variations in the sensitivity showed that two cultivars (Wardan and Bundel) were sensitive to elevated O3, while other three cultivars (Fahli, Saidi, and Mescavi) were resistant, and JHB-146 showed intermediate sensitivity. Therefore, the present study supported the selection of sensitive cultivar of clover as a bioindicator for O3 under Indian conditions for the areas experiencing higher concentrations of O3.  相似文献   

17.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.  相似文献   

18.
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies and sun leaves in closed aspen and aspen-birch forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin. Stomatal conductance for O3 was derived from sap flux data and AFst was estimated either neglecting or accounting for the potential influence of non-stomatal leaf surface O3 deposition. Leaf-level AFst (AFstl) was not reduced by elevated CO2. Instead, there was a significant CO2 × O3 interaction on AFstl, as a consequence of lower values of gs in control plots and the combination treatment than in the two single-gas treatments. In addition, aspen leaves had higher AFstl than birch leaves, and estimates of AFstl were not very sensitive to non-stomatal leaf surface O3 deposition. Our results suggest that model projections of large CO2-induced reductions in gs alleviating the adverse effect of rising tropospheric O3 may not be reasonable for northern hardwood forests.  相似文献   

19.
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.  相似文献   

20.
We examined the effect of ozone (O3) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2× ambient O3 ranged from 64.5 to 74.2 μl O3 l−1 h AOT40, and 117.1 to 123.2 nl O3 l−1 4th highest daily maximum 8-h average O3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2× O3. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2× O3. Exposure to 2× O3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O3 on wax biosynthesis. These results demonstrate O3-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号