首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to determine the impact of neighbourhood land-cover in epiphytic lichen diversity. We used geostatistics to analyse the spatial structure of lichen-indicators (number of lichen species and Lichen Diversity Value) and correlate them to land-cover considering different distances from the observed data. The results showed that lichen diversity was influenced by different environmental factors that act in the same territory but impact lichens at different distances from the source. The differences in the distance of influence of the several land-cover types seem to be related to the size of pollutants/particles that predominantly are dispersed by each land-cover type. We also showed that a local scale of analysis gives a deeper insight into the understanding of lichen richness and abundance in the region. This work highlighted the importance of a multiple spatial scale of analysis to deeply interpret the relation between lichen diversity and the underling environmental factors.  相似文献   

2.
We investigated the response of epiphytic lichens to air pollution, against the background of other ecological predictors in a prealpine heterogeneous area, using Non-Parametric Multiplicative Regression (NPMR). The best NPMR model for total lichen diversity according to N environmental predictors at tree level has a cross R(2)=0.709. It includes 10 variables, belonging to three different subsets of factors: two pollution-related factors (distance in meters from the road and from the cement factory); four stand-related (habitat, heat index, LAI and elevation) and four substrate-related factors (inclination, circumference and texture and tree species). Considering separately the effects of each subset on lichen diversity, substrate- and stand-related factors produce good models with similar cross R(2) (0.490 and 0.500, respectively), whereas pollution-related factors produce a model with a lower cross R(2) (0.340). Hence, we provide information to investigate the applicability of lichen biomonitoring to complex heterogeneous areas where standardized protocols are not reliable.  相似文献   

3.
This work provided additional information for a better interpretation of lichen diversity values in biomonitoring studies of air pollution. The effects of 12 predictive variables were estimated for the Genova province (NW Italy) by means of a non-parametric model. The diversity of epiphytic lichens was strictly correlated with mean annual rainfall and mean annual temperature. Different variables were found to affect the lichen diversity in urban vs. forested areas. In urban areas, air pollutants, mainly SO2, are still the main limiting factor, even if under ameliorating conditions this relationship becomes less significant. In forested areas, harvesting and forest fires showed a predominant effect, suggesting the need to develop a more defined sampling protocol to estimate atmospheric pollution in such ecosystems.  相似文献   

4.
Epiphytic lichen and bryophyte distribution and frequency were investigated on the trunks of 145 young oak trees throughout London and surrounding counties, and compared with pollution levels and bark pH. Sixty-four lichen and four bryophyte species were recorded. Three major zones were identified: (i) two central regions with a few lichens, bryophytes absent; (ii) a surrounding region with a more diverse flora including a high cover of nitrophyte lichens; and (iii) an outer region, characterised by species absent from central London, including acidophytes. Nineteen species were correlated with nitrogen oxides and 16 with bark pH, suggesting that transport-related pollution and bark acidity influence lichen and bryophyte distribution in London today. Lichens and bryophytes are responding to factors that influence human and environmental health in London. Biomonitoring therefore has a practical role to assess the effects of measures to improve London's air quality.  相似文献   

5.
Element content in the bark on Norway spruce (Picea abies) was measured in a montane forest heavily affected by forest dieback and compared to that in a nearby intact stand. Bark contained less S, K, Fe, Mn, Pb, Cu, and H+ and more N, Ca, Mg, and Zn in the dieback-affected stand than in the intact one. Diversity of epiphytic lichen vegetation was higher in the dieback-affected stand than in the intact one. Cover of the foliose lichen Hypogymnia physodes was negatively correlated with Mn and Cu content of bark. Cover of the extremely acidophytic species Lecanora conizaeoides decreased with increasing Mg and increased with increasing Cu content of bark. The measurements support the hypothesis that chemical site factors are decisive for the high lichen diversity in dieback-affected montane spruce forests.  相似文献   

6.
Scots pine seedlings were exposed to wet-deposited nickel (Ni) and removal of lichen cover in a dry heath Scots pine forest. Ni deposition affected the colonization of roots by indigenous ectomycorrhizal fungi in contrasting ways in intact and skimmed quadrats. Highest frequencies of tubercle morphotypes of ectomycorrhiza were found in quadrats exposed to 100 mg m(-2) year(-1) Ni in lichen covered treatment, while in skimmed quadrats these peaked after the treatment with 10 mg Ni m(-2) year(-1). Removal of the lichen layer increased the value of diversity index (H') of ectomycorrhizal fungal community, probably due to the increase in the evenness of the morphotype distribution. Lichen removal seemed also to improve the condition of the short roots, as the frequencies of poor and senescent short roots were decreased by the removal.  相似文献   

7.
- DOI: http:/dx.doi.org/10.1065/espr2005.06.262 Goal, Scope and Background The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. Main Features While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Results and Discussion Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Conclusion It is concluded that the overall role of forest soil as a source and/or sink for chloroacetic acids and volatile organochlorines is still unclear; the available laboratory and field data reveal only bits of the puzzle. Detailed knowledge of the natural degradation and formation processes in forest soil is important to evaluate the strength of forest ecosystems for the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Recommendation and Perspective As the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil can be influenced by human activities, evaluation of the extent of this influence will help to identify what future actions are needed to reduce human influences and thus prevent further damage to the environment and to human health caused by these compounds.  相似文献   

8.
Viña A  Chen X  McConnell WJ  Liu W  Xu W  Ouyang Z  Zhang H  Liu J 《Ambio》2011,40(3):274-284
Conservation policies are increasing in response to human-induced ecosystem degradation, but little is known about their interplay with natural disasters. Through an analysis of satellite imagery and field data we evaluated the impacts of a devastating earthquake on forest recovery and avoided forest loss estimated to have been obtained by two of the largest conservation programs in the world. Results show that more than 10% of the forests in Wenchuan County, Sichuan province, China were immediately affected by the 2008 earthquake, offsetting some gains in forest cover observed since the enactment of the conservation programs. But without the enactment of these conservation programs, the combined effects of human disturbance and earthquake-induced landslides could have severely reduced the region’s forest cover. The continuation—and enhancement—of incentives for participation in conservation programs will be important for reducing the environmental impacts of the combined effects of human disturbance and natural hazards not only in the study area but also in many disaster-prone regions around the world.  相似文献   

9.
Epiphytic lichens as indicators of environmental quality in Rome   总被引:1,自引:0,他引:1  
A synthesis of the studies on lichen diversity carried out in Rome over the period 1982-2003 is presented. In this work, the Lichen Diversity (LD) method has been applied. Besides air pollution, the most important variable affecting the epiphytic lichen flora of Rome, currently updated to 102 taxa, is the influence of the Tyrrhenian Sea. Significant changes in the lichen flora have been noted over the past 20 years, with the lowest diversity now being found in the urban centre and in the eastern and southern sectors, while the "lichen desert" area has decreased in parallel with decreasing concentrations of CO, NO(x) and SO2.  相似文献   

10.
Scots pine seedlings were exposed to wet-deposited nickel (Ni) and removal of lichen cover in a dry heath Scots pine forest. Ni deposition affected the colonization of roots by indigenous ectomycorrhizal fungi in contrasting ways in intact and skimmed quadrats. Highest frequencies of tubercle morphotypes of ectomycorrhiza were found in quadrats exposed to 100 mg m−2 year−1 Ni in lichen covered treatment, while in skimmed quadrats these peaked after the treatment with 10 mg Ni m−2 year−1. Removal of the lichen layer increased the value of diversity index (H′) of ectomycorrhizal fungal community, probably due to the increase in the evenness of the morphotype distribution. Lichen removal seemed also to improve the condition of the short roots, as the frequencies of poor and senescent short roots were decreased by the removal.  相似文献   

11.
Chen X  Li BL 《Chemosphere》2003,51(3):215-226
Studies on the combined effects of global climate change and human disturbances are important for biodiversity conservation and natural resources management. Here we use the modified forest dynamics model to simulate the tree diversity change of a typical mixed broadleaved Korean pine forest regenerating from clear-cuts in Northeast China in response to global climate change, double concentration of CO(2) and human disturbances during the next 50 years. We consider the following climate change scenario: the annual temperature will increase 2 degrees C, the annual precipitation will increase 10% and CO(2) concentration will increase to 700 microll(-1) linearly in 50 years. Five kinds of human disturbances under climate change are considered: logging which removes all trees with diameter at the breast height of more than 50 cm; removing all individuals of any one species; and removing all individuals of shade tolerant, shade intolerant and medium type tree species, respectively. We find that the index of proportional representation of species (alpha index) for the forest growing from clear-cuts increases significantly under climate change, but decreases under climate change plus logging. The index of changing representation of species (beta(c) index) increases significantly under climate change and climate change plus logging. When any one species is removed alpha diversity of the forest growing from clear-cuts changes significantly under climate change, but beta(c) index remains almost the same. When all individuals of shade tolerant species, shade intolerant species, or medium type species are removed, respectively, alpha diversity decreases, but beta(c) diversity changes in more complicated ways. The implications of these results for preserving tree diversity in this type of forest are also discussed.  相似文献   

12.
This paper compares the dynamics, i.e. the rates of change in element concentrations of young and older lichen thallus parts, of one foliose and one fruticose lichen, during a transplant experiment to a polluted site. Both lichen parts respond to environmental changes. Here, differential accumulation suggests that differential constitution leads to differential uptake and release, and/or the overall behaviour is partly due to internal translocation and regulation mechanisms within the whole lichen. For thallus parts, internal translocation should be taken into account as one more factor affecting lichen “memory length”. Young parts of the thallus presented higher rates of change, but different lichen parts accumulate different elements to different extents. Therefore tissue selection in monitoring may depend on the element of interest, and cannot be made into a generalized approach in survey set-ups: the choice depends on the element.  相似文献   

13.
Lichens are a bottleneck resource for circumpolar populations of reindeer, and as such, for reindeer husbandry as an indigenous Sami land-use tradition in northern Sweden. This study uses ground lichen data and forest information collected within the Swedish National Forest Inventory since 1953, on the scale of northern Sweden. We found a 71 % decline in the area of lichen-abundant forests over the last 60 years. A decline was observed in all regions and age classes and especially coincided with a decrease of >60 year old, open pine forests, which was the primary explanatory factor in our model. The effects of reindeer numbers were inconclusive in explaining the decrease in lichen-abundant forest. The role that forestry has played in causing this decline can be debated, but forestry can have a significant role in reversing the trend and improving ground lichen conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0759-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
Epiphytic lichens were sampled on mango trees (Mangifera spp.) in 32 sites in urban centres and surrounding rural areas in seven provinces of upper northern Thailand. Species were recorded on each tree and frequency estimated in a grid of ten 100-cm2 units. Analysis of macrolichen data showed that lichen diversity was inversely correlated with human population, and that lichen diversity was lowest in the cities with the highest population. The distribution and frequencies of species belonging to families Physciaceae and Parmeliaceae contributed to the groups identified by cluster analysis that corresponded to gradients in rainfall and population density. Comparison with modelled pollution data and local pollution records showed greater correspondence of lichen data with the effects of PM10 than with anthropogenic sulphur.  相似文献   

15.
To enhance the reliability of the moss and lichen transplant technique for active biomonitoring of trace metals in urban environments, we evaluated the natural variability in the chemical composition of the (epilithic and epiphytic) moss Hypnum cupressiforme and the epiphytic lichen Pseudevernia furfuracea from two reference areas in NE Italy. Green shoots of epilithic mosses and lobes of epiphytic lichens from larch branches showed rather homogenous composition and were selected for the exposure in nylon bags. As different physico-chemical pre-treatments are usually applied to selected cryptogamic material before its exposure, we also evaluated the effects of oven-drying at 120 degrees C for 24h, washing in 1N HNO3 solution, and in 0.5% NH4 oxalate solution at 85 degrees C for 15 h on the chemical composition and morphology of water-washed moss shoots and lichen lobes. Pre-treatments remarkably changed the chemical composition of selected materials but not their surface morphology.  相似文献   

16.
Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50kgNha(-1)y(-1) were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10kgNha(-1)y(-1) (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species.  相似文献   

17.
The results of a study carried out to assess current environmental quality by the diversity of epiphytic lichens in the urban area of Turin (N Italy), and comparison with historical data spanning over a period of 200 years, are presented. Lichen assemblages over different time periods are related to changes in environmental conditions and the present situation is improving, as shown by increased numbers of both species and thalli in the city. Today, NO(x) and total suspended particles are the main air pollutants affecting lichen diversity.  相似文献   

18.

Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta’omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.

  相似文献   

19.
Four different methods of epiphytic lichen mapping were used for the assessment of air quality in the region under the influence of the Sostanj Thermal Power Plant (Salek Valley, Slovenia). Three methods were based on the presence of different lichen species (VDI, EU and ICP-Forest), the fourth on a frequency and coverage assessment of different growth forms of epiphytic lichens, e.g. crustose, foliose and fruticose (SI). A comparison of the results from the assessment of air quality between forest sites (ICP-Forest, SI) and open areas (VDI, EU and SI), obtained by the different methods of epiphytic lichen mapping, is presented in the contribution. Data showed that lichen species richness is worse in forest sites in comparison with open areas. From the data obtained it can be concluded that epiphytic lichen mapping in open areas is a better method for the assessment of air pollution in a given area than mapping in forest sites. The species-based methods in open areas are more powerful and useful for air quality assessment in polluted research areas than the SI and ICP-Forest methods.  相似文献   

20.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号