首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

2.

Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  相似文献   

3.
This study evaluated the efficacy of a washing process with cyclodextrin in combination with ethylenediaminetetraacetate (EDTA) for the simultaneous mobilization of heavy metals and PCBs from a field contaminated soil. Ultrasonically aided mixing of the field contaminated soil with a combination of cyclodextrin solution (10%, w/v) and a sparing quantity (2 mmol) of EDTA, simultaneously mobilized appreciable quantities of PCBs and much of the analyte metal (Cd, Cr, Cu, Mn, Ni, Pb, Zn) burdens. Relative to the action of individual reagents, a combination of randomly methylated (RAMEB) or hydroxypropyl beta-cyclodextrin (HPCD) with EDTA did not alter the PCB extraction efficiency nor did the presence of cyclodextrin change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe, Mn, Ni, and Zn) but did increase the recovery of Cu and Pb modestly. Three sonication-washes with the same charge of reagents mobilized appreciable quantities of PCBs (40-76%) and quantitatively extracted the labile fraction of Cd, Cu, Mn, and Pb. RAMEB proved to be more efficient than HPCD for PCB extractions. Three successive extractions with a single charge of cyclodextrin mobilized almost as much PCB (RAMEB, 76%; HPCD, 40%) as did the companion extractions that used fresh reagents each time (RAMEB, 78%; HPCD, 42%). Collectively, these studies demonstrated that PCB compounds and selected heavy metals can be co-extracted efficiently from soil with three successive washes with the same washing suspension containing EDTA and cyclodextrin.  相似文献   

4.
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (>50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550°C with a heating rate of 5°C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However, executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550°C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg.
ImplicationsA remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.  相似文献   

5.
Lestan D  Hanc A  Finzgar N 《Chemosphere》2005,61(7):1012-1019
The effect of soil ozonation on Pb and Zn extraction with EDTA, bioavailability (Ruby's Physiologically Based Extraction Test, PBET) and mobility (Toxicity Characteristic Leaching Procedure, TCLP) of Pb was studied on contaminated soils taken from 7 different locations in the Mezica Valley, Slovenia. EDTA extraction (40 mmol kg(-1)) removed from 27.4+/-1.5% to 64.8+/-1.5% of Pb, and from 1.9+/-0.2% to 22.4+/-2.0% of Zn from tested soils, and significantly reduced soil Pb bioavailability (PBET) and mobility (TCLP). Pretreatment of tested soils with ozone before EDTA extraction enhanced EDTA extractability of Pb for 11.0 to 28.9%, but had no effect on the extractability of Zn. In most of the soils, ozonation had no statistically significant effect on bioavailability and mobility of Pb, residual after EDTA extraction. Using linear regression analysis we found a significant increase (p<0.01) in EDTA extractability of Pb after soil ozonation in soils with a higher initial Pb content. EDTA extractability of Pb after soil ozonation was also significantly higher for soils with a lower Pb extractability when treated with EDTA alone. We found no correlation between soil organic matter content and the percentage of the Pb fraction bound to soil organic matter (where from 25.6+/-1.3% to 73.2+/-0.6% of Pb reside in tested soils) and Pb extractability with EDTA after soil ozonation.  相似文献   

6.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   

7.
Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na(2)EDTA, (NH(4))(2)EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH(4))(2)EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn.  相似文献   

8.
An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section.  相似文献   

9.
Finzgar N  Kos B  Lestan D 《Chemosphere》2004,57(7):655-661
The feasibility of in situ washing of soil contaminated with Pb (6.83 mmol kg(-1)) using biodegradable chelator, [S,S] stereoisomere of ethylenediamine disuccinate ([S,S]-EDDS) and horizontal permeable barriers was examined in soil columns. After 4-cycles of 10 mmol kg(-1) soil [S,S]-EDDS applications, followed by irrigation, 24.7% of total initial Pb was washed from the contaminated soil and accumulated into the barrier. Sequential extractions indicated that washing removed most of the Pb from the organic soil fraction. Barriers were positioned 20 cm deep in the soil and consisted of a 2 cm layer of nutrient enriched vermiculite. Barriers reduced leaching of Pb in the first cycle of [S,S]-EDDS addition by more than 500-times compared to columns with no barrier. After four cycles of chelator addition, a total of 0.24% of the initial Pb was leached from the columns with barriers. Four cycles of in situ soil washing in soil columns were less effective than simulated ex situ soil washing with 40 mmol kg(-1) [S,S]-EDDS, where 51.0% of the Pb was removed after 48-h extraction. Ex situ soil washing with 10 mmol kg(-1) [S,S]-EDDS was equally effective as the first cycle of in situ soil washing (15.5% and 14.5% of removed Pb, respectively).  相似文献   

10.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   

11.
Finzgar N  Lestan D 《Chemosphere》2008,73(9):1484-1491
The feasibility of a novel two-phase method for remediation of Pb (1374 mg kg(-1)), Zn (1007 mg kg(-1)), and Cd (9.1 mg kg(-1)) contaminated soil was evaluated. In the first phase we used EDTA for leaching heavy metals from the soil. In the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of washing solution for soil rinsing (removal of the soil-retained, chelant-mobilized metallic species). In EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (15 mA cm(-2)). The released metals were removed from the solution by filtration as insoluble participate and by electro-deposition on the cathode. Four consecutive additions of 5.0 mm ol kg(-1) EDTA (total 20 mmol kg(-1)) removed 44% Pb, 14% Zn and 35% Cd from the soil. The mobility of the Pb, Zn and Cd (Toxicity Characteristic Leaching Procedure) left in the soil after remediation was reduced by 1.6, 3.4 and 1.5 times, respectively. The Pb oral availability (Physiologically Based Extraction Test) in the simulated stomach phase was reduced by 2.4 and in the intestinal phase by 1.7 times. The discharge solution was clear, almost colorless, with pH 7.73 and 0.47 mg L(-1) Pb, 1.03 mg L(-1) Zn, bellow the limits of quantification of Cd and 0.023 mM EDTA. The novel method enables soil leaching with small water requirements and no wastewater generation or other emissions into the environment.  相似文献   

12.
Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg−1, 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206Pb and 208/206Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy.  相似文献   

13.
Begum ZA  Rahman IM  Tate Y  Sawai H  Maki T  Hasegawa H 《Chemosphere》2012,87(10):1161-1170
Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2′-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the metal distribution in the soil before and after the extractive decontamination using biodegradable APCs, and the capability of the APCs in removing the metal ions even from the theoretically immobilized fraction of the contaminated soil was observed. GLDA appeared to possess the greatest potential to decontaminate the soil through ex situ washing treatment compared to the other biodegradable chelants used in the study.  相似文献   

14.
Finzgar N  Lestan D 《Chemosphere》2006,63(10):1736-1743
The feasibility of a novel EDTA-based soil heap leaching method with treatment and reuse of extractants in a closed process loop was evaluated on a laboratory scale. Ozone and UV irradiation were used for oxidative decomposition of EDTA-metal complexes in extractants from Pb (1243 mg kg(-1)) and Zn (1190 mg kg(-1)) contaminated soil. Released metals were absorbed in a commercial metal absorbent Slovakite. Six-consecutive additions of 2.5 mmol kg(-1) EDTA (total 15 mmol kg(-1) EDTA) removed 49.6 +/- 0.6% and 19.7 +/- 1.7% of initial total Pb and Zn from soil (4.6 kg) packed in 22 cm high columns. The efficiency of extraction was similar to small-scale simulations of heap leaching (15 0 g of soil), where EDTA used in the same manner removed 49.7 +/- 1.0% and 13.7 +/- 0.4% of Pb and Zn. The new heap leaching method produced discharge extractant with fairly low final concentrations of Pb, Zn and EDTA (1.98 +/- 2.17 mg l(-1), 4.55 +/- 2.36 mg l(-1), and 0.05 +/- 0.04 mM, respectively), which could presumably be reduced even further with continuation of treatment. The results of our study indicate that for soils contaminated primarily with Pb, treating the EDTA extractants with ozone/UV and reuse of extractants enables efficient soil heap leaching with very little or no wastewater generation, easy control over emissions, and lowers the requirements for process water.  相似文献   

15.
Chelant-aided enhancement of lead mobilization in residential soils   总被引:3,自引:0,他引:3  
Chelation of metals is an important factor in enhancing solubility and hence, availability to plants to promote phytoremediation. We compared the effects of two chelants, namely, ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) in enhancing mobilized lead (Pb) in Pb-based paint contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Batch incubation studies were performed to investigate the effectiveness of the two chelants in enhancing mobilized Pb, at various concentrations and treatment durations. Over a period of 1 month, the mobilized Pb pool in the San Antonio study soils increased from 52 mg kg−1 to 287 and 114 mg kg−1 in the presence of 15 mM kg−1 EDTA and EDDS, respectively. Stepwise linear regression analysis demonstrated that pH and organic matter content significantly affected the mobilized Pb fraction. The regression models explained a large percentage, from 83 to 99%, of the total variation in mobilized Pb concentrations.  相似文献   

16.
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element.  相似文献   

17.
Bajda T 《Chemosphere》2011,83(11):1493-1501
Due to its relatively low solubility, mimetite Pb5(AsO4)3Cl may control Pb and As(V) solution levels at a low value in contaminated soils. The time-dependent dissolution of mimetite by low-molecular-weight organic acids (LMWOAs) such as acetic, lactic, citric, and ethylene diamine tetra-acetic acid (EDTA) was determined. At pH 3.5, the presence of citric acid or EDTA significantly increases the solubility of mimetite while acetic or lactic acids show little effect. The effect of all organic anions on the dissolution of mimetite increased with the increase in solution pH. The rate of mimetite dissolution depended on the kind and concentration of organic solvents in the sequence rEDTA > rlactate > racetate > rcitrate. Soluble Pb and As(V) released in LMWOAs and EDTA were higher than the WHO guideline value for these elements in drinking water (10 μg As(V) L−1, 10 μg Pb L−1). This suggests that soil organic acids in rhizosphere can potentially liberate Pb and As(V) from mimetite in contaminated soils.  相似文献   

18.
Two common sorrel (Rumex acetosa) accessions, one from a Zn-Pb contaminated site (CS accession) and the other from an uncontaminated site (UCS accession), were hydroponically exposed to a mixture of heavy metals (Pb2+ + Zn2+ + Cd2+) with and without EDTA at an equimolar rate. The metallicolous CS accession showed a higher tolerance to metal treatment in the absence of the chelating agent, whereas the UCS accession was especially tolerant to EDTA treatment alone. Combination of metal and EDTA treatment resulted in a higher Pb accumulation in shoots of both accessions although plants hardly showed phytotoxic symptoms. Cd and Zn uptake was not augmented by EDTA addition to the polymetallic medium. Chelant-assisted Pb accumulation was 70% higher in the CS accession than in the UCS accession, despite the fact that the former accession evapotranspired less water than the UCS accession. These results support the existence of a non-selective apoplastic transport of metal chelates by R. acetosa roots, not related to transpiration stream.  相似文献   

19.
EDTA强化电动力学修复重金属复合污染土壤   总被引:2,自引:0,他引:2  
在自制的电动力学装置中,研究多种重金属复合污染土壤的电动力学修复,通过在阴极添加络合剂EDTA来提高修复效率。实验结果表明,EDTA的引入提高了修复过程中的电流值,且EDTA与重金属的络合提高了污染物向电极液的迁移效率,从而强化了电动力学修复效果。在设定的浓度(0、0.01、0.02、0.05和0.1 mol/L)中,0.1 mol/L的EDTA具有最佳的修复效率。在此实验条件下,污染土壤中的总铜、总铅和总镉的去除率分别为90.2%、68.1%和95.1%。电动力学修复后,对土壤重金属进行化学形态分析,发现电动力学修复显著改变了土壤重金属存在形态,修复后土壤中的铜、铅、镉主要以较稳定的有机态和残余态形式存在,显著降低了对周边生物和环境的毒害。  相似文献   

20.

Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg−1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号