首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The city of Hermosillo, Sonora in northern Mexico was investigated for its heavy metals content. Samples of sedimented dust in roofs from 25 elementary schools were analyzed for their contents of Ni, Cr, Zn, Cd, Co, Ba, V, Pb, Fe and Cu after digestion with nitric acid. The results of the analysis were used to determine spatial distribution and magnitude of heavy metals pollution. The results of this study reveal that heavy metals distribution is different in two areas of the city. The southern area contains higher concentrations of heavy metals than the northcentral area. The mean level of Cd in exterior dust is 5.65 mg kg−1 in the southern area whereas the mean level of Cd is 2.83 mg kg−1 in the northcentral area. Elevated concentrations of Zn (2012 mg kg−1), Pb (101.88 mg kg−1), Cr (38.13 mg kg−1) and Cd (28.38 mg kg−1) in roof dust were found in samples located near industrial areas. Principal component analysis (PCA) was applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA shows two main sources: (1) Pb, Cd, Cr and Zn are mainly derived from industrial sources, combined with traffic sources; (2) Fe, Co and Ba are mainly derived from natural sources. V and Ni are highly correlated and possibly related to fuel combustion processes. Enrichment factors were calculated, which in turn further confirms the source identification. Ba and Co are dominantly crustal. Anthropogenically added Cd, Pb, Zn and Cr show maximum enrichment relative to the upper continental crustal component. The distribution of the heavy metals in dust does not seem to be controlled only by the topography of the city, but also by the location of the emission sources.  相似文献   

2.
Previous research showed a regional Cu enrichment of 6 mg kg−1 in the top soil of the Ypres war zone (Belgium), caused by corrosion of WWI shell fragments. Further research was required since in addition to Cu, also As, Pb, and Zn were used during the manufacturing of ammunition. Therefore, an additional data collection was conducted in which the initial Cu data set was tripled to 731 data points and extended to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) which permitted (1) to evaluate the environmental impact of the heavy metals at a regional scale and (2) to assess their regional spatial occurrence by performing an optimized geostatistical modeling. The results showed no pollution at a regional scale, but sometimes locally concentrations exceeded the soil sanitation threshold, especially for Cu, Pb, and Zn. The spatial patterns of Ni and Cr were related to variations in soil texture whereas the occurrences of Cu and Pb were clearly linked to WWI activities. This difference in spatial behavior was confirmed by an analysis of coregionalization.  相似文献   

3.
A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition.  相似文献   

4.
Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adélie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 μg g−1 dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 μg g−1 dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine.  相似文献   

5.
We here report complementary trace element (Fe, Pb, Cd, Zn, Cr, Cu, Ni and sulfur) concentrations and ratios in pine needles collected in the urban area of Cologne, Germany. Potential element sources are discussed in conjunction with enviromagnetic and PAH data to evaluate air quality. Foliar trace element concentrations of Zn, Cr, Cu, Ni and sulfur are close to essential nutrient levels. Median concentrations of foliar Fe, Pb and Cd in Cologne are 132, 1.1, and 0.06 μg g?1, respectively. Thus these elements are enhanced over biogenic background levels and show significant accumulation with needle exposure time. Foliar sulfur concentrations vary between 868 and 2076 μg g?1 with a median value of 1409 μg g?1, except for two locations where 2370 and 2379 μg g?1 were observed. Cadmium serves as an indicator for local industrial emissions with short transport distances of only a few kilometres in Cologne City. Elevated Fe, Pb and Zn concentrations mark areas with higher traffic loads and agree with enhanced PAH burdens and magnetic susceptibility intensities of pine needles. Isopleths mapping and source differentiation of atmospheric pollutants using foliar trace elements is feasible. For temporal or spatial high-resolution studies more cost-effective environmental magnetics is recommended, which may guide in design of detailed studies aiming at identification and allocation of emission sources. Hereby, a combination of organic tracers (PAH), magnetic properties, and trace metals is considered most reliable.  相似文献   

6.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

7.
We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0-10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of plots exceeded United States Environmental Protection Agency screening guidelines for Pb. In a principal component analysis, the first component corresponded to Co, Cr, and Fe, which are constituents of local mafic rocks. The second component corresponded to Cu, Pb, and Zn which were significantly higher within than beyond a 100 m buffer of the major roads within the city; furthermore, Pb and Zn were higher in older residential lots.  相似文献   

8.
In the urban-rural transitional area of Hangzhou, China, 74 topsoil samples were collected from vegetable fields to measure the contents of arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). The combination of multivariate statistical and geostatistical methods successfully separated the contaminating elements (As, Cd, Cu, Hg, Pb and Zn) from uncontaminated elements (Co, Cr, Ni and Mn). A significant correlation was found between these uncontaminated elements and total Al2O3, Fe2O3, and SiO2 of the soils, indicating that the source of these elements was mainly controlled by soil-forming factors. On the other hand, these contaminating elements showed relatively weaker correlation and higher spatial variability, indicating that their enrichment and spatial heterogeneity were mostly affected by anthropic inputs. Through the pollution evaluation, it was found that only 30.8% of the study area did not suffer from moderate or severe pollution.  相似文献   

9.

Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.

  相似文献   

10.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

11.
Chabukdhara M  Nema AK 《Chemosphere》2012,87(8):945-953
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future.  相似文献   

12.
The concentration and geochemical fractionation of six trace metals related with environmental quality assessment, namely Cd, Cr, Cu, Ni, Pb, and Zn, in 30 surface sediments from both inshore and offshore areas of the Taiwan Strait were measured to investigate their distribution characteristics, evaluate their potential mobility, and assess their pollution status. The geoaccumulation index results indicated that, on average, the studied metals presented an order of Cd?>?Pb?>?Ni?>?Zn?>?Cu?>?Cr and were practically in uncontaminated status except Cd. The results of the sequential extraction analysis indicated that, on average, the studied metals were mostly accumulated in residual fraction except Cd whose concentration was the highest in the acid soluble fraction presenting a high risk to the environment, and their mobility decreased in the sequence of Cd?>?Pb?>?Ni?>?Cu?>?Zn?>?Cr. Based on the mean probable effect level quotients, the combination of the studied metals had an 8 % probability of being toxic at two sampling sites and had a 21 % probability of being toxic at the rest of sites. The spatial distribution of the studied metals in total concentrations and different geochemical fractions corroborated the previous findings about the possible sediment transportation routes in and around the Taiwan Strait.  相似文献   

13.
渤海南部表层沉积物重金属污染及潜在生态风险评价   总被引:2,自引:0,他引:2  
利用电感耦合等离子体/质谱仪(ICP/MS)测定了渤海南部21个站位表层沉积物中Cr、Cu、Zn、Cd和Pb共5种重金属浓度,比较分析了重金属来源及分布特征,同时应用Hakanson潜在生态危害指数法进行潜在生态风险评价.结果表明,调查区域沉积物中Cr、Cu、Zn、Cd、Pb的平均质量浓度分别为43.67、17.27、...  相似文献   

14.
Surface sediments (0-5 cm) from 59 stations within the Yangtze River intertidal zone (YRIZ) were sampled for metal contamination analysis in April and August 2005. The concentrations ranged (in mg kg−1 dry weight): Al, 40,803-97,213; Fe, 20,538-49,627; Cd, 0.12-0.75; Cr, 36.9-173; Cu, 6.87-49.7; Mn, 413-1,112; Ni, 17.6-48.0; Pb, 18.3-44.1; and Zn, 47.6-154; respectively. Among the 59 sampling stations, enrichment factors (EF) indicate enrichment of Cd (52 stations), Cr (54 stations), Cu (5 stations), Ni (26 stations), Pb (5 stations) and Zn (5 stations). Geoaccumulation indexes (Igeo) also suggest individual metal contamination in localized areas. This study indicates that Cd, Cr and Ni enrichment in the YRIZ sediment is widespread whereas Cu, Mn, Pb and Zn enrichment is localized or nonexistent. Factor and cluster analyses indicate that Cd is associated with total organic carbon whereas Cu, Cr, Ni, Pb and Zn have a close association with Mn.  相似文献   

15.
A set of toxic metals, i.e. As, Hg, Pb, Cd, Cu, Zn, Ni and Cr, in urban and suburban SDSs were investigated comparatively in the biggest metropolitan area of China, Shanghai. Results showed that all of the metals except As were accumulated greatly, much higher than background values. Geo-accumulation index indicated that metal contamination in urban SDSs was generally heavier than that in suburban SDSs. Potential ecological risk index demonstrated that overall risks caused by metals were considerable. Cd contributed 52% to the overall risk. Multivariate statistical analysis revealed that in urban SDSs, Zn, Ni, Cd, Pb, Cu and Cr were related to traffic and industry; coal combustion led to elevated levels of Hg; soil parent materials controlled As contents. In suburban SDSs, Pb, Cu, As and Cd largely originated from traffic pollution; Zn, Ni and Cr were associated with industrial contaminants; Hg was mainly from domestic solid waste.  相似文献   

16.
To assess the exposure of avian species in Jiangsu Province, China to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), the flight feathers, eggshells and feces of total ten avian species (including four herons, four cranes, one stork and one gull) were collected during March to May in 2012. The total concentrations of As, Cd and Hg were measured by Atomic Fluorescence Spectrometer; Cr, Cu, Ni, Pb and Zn were measured by inductively coupled plasma optical emission spectrometer. The determined concentrations of Cr (3.94, 1.33–8.30 mg kg?1), Cu (15.02, 7.34–35.53 mg kg?1) and Zn (134.66, 77.26–242.25 mg kg?1) in fresh feathers and Cd (7.93, 7.44–9.12 mg kg?1), Ni (22.74, 19.38–24.71 mg kg?1), Pb (85.06, 78.72–91.95 mg kg?1) and Zn (63.54, 55.82–72.14 mg kg?1) in eggshells were higher than the mean values of other reported data, indicating a considerable heavy metal pollution status in local area. Comparing to the heavy metal levels in early historic feathers (1992–2000), a significant elevation of concentrations has been observed in recent bird feathers. For feathers of Grus japonensis, the heavy metal concentrations increased by 19–267%. This increased tendency was consistent with local GDP (Gross Domestic Products) development. The anthropogenic economic activity especially industrial development may be a critical reason that caused the increase of heavy metal levels in local avian species.  相似文献   

17.

Spatial variations of Cr, Cu, Hg, Ni, Pb, and Zn in the surface sediments from 34 stations of the Kaohsiung coastal zone southwestern Taiwan were studied to address the current pollution status, sediment quality, and potential ecological risk. The study revealed that the concentrations of sediment metals in Kaohsiung Harbor were alarmingly high compared to the other region of Kaohsiung coast. The concentrations of Cr, Cu, Hg, Ni, Pb, and Zn in the harbor sediments were as high as 351, 247, 1.93, 61.8, 60.9, and 940 mg kg−1, respectively. The current situation of metal pollution was assessed by different pollution indices and results showed moderate to severe enrichment of Cu, Hg, and Zn in the harbor sediments. According to the degree of contamination, pollution load index, and contamination severity index, the sediments from the inner Kaohsiung Harbor show high degree and high severity of metal contamination, while the rest of Kaohsiung coastal areas show uncontaminated or low-level pollution. Results of mean ERM quotient and potential ecological risk index also indicated that the harbor sediments posed a 49% probability of biological toxicity and very high ecological risk. The toxic units indicated that the negative biological effects of the six metals in the harbor sediments were Zn > Cu > Cr > Ni > Hg > Pb. In contrast to Kaohsiung Harbor as a trap where considerable amount of anthropogenic metal loadings accumulated in sediments, low metal concentrations were observed in most Kaohsiung coastal sediments. It probably resulted from the limited fine-grained sediment deposition. In the wave-dominated Kaohsiung coastal zone, fine-grained sediments associated with polluted metals tend to be easily resuspended and transported offshore via waves and wave-induced currents. The results of this study can provide valuable information for river and coastal zone management.

  相似文献   

18.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

19.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

20.
Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号