首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

2.
Oleszczuk P  Xing B 《Chemosphere》2011,85(8):1312-1317
High adsorption capacity of carbon nanotubes (CNTs) may greatly determine the bioavailability and mobility of organic contaminants. The fate of contaminants adsorbed by CNTs may be substantially influenced by surfactants used both in the synthesis and dispersion of CNTs. The aim of this research was to determine the influence of surfactants (nonionic - TX100, cationic - CTAB and anionic - SDBS) on adsorption and desorption of oxytetracycline (OTC) by multiwalled carbon nanotubes (MWCNTs). The surfactants used had a substantial influence on both adsorption and desorption of OTC. The direction of changes depended clearly on the type of surfactant. In case of anionic SDBS, increased adsorption of OTC by MWCNTs was observed. The presence of TX100 and CTAB decreased the adsorption of OTC by MWCNTs significantly. The increase of OTC adsorption after ultrasonic treatment was observed in case of MWCNTs alone and MWCNTs with SDBS and TX100. However, ultrasonic treatment caused OTC adsorption decrease in the presence of CTAB. The change of pH had also an important effect on OTC adsorption in the presence of surfactants. Depending on the surfactant and pH, an increase or decrease of OTC adsorption was observed. The presence of surfactants increased OTC desorption from MWCNTs significantly as follows: SDBS = CTAB < TX100. The results obtained suggest new potential threats and constitute a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of MWCNTs and surfactants.  相似文献   

3.
Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk.  相似文献   

4.
Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.  相似文献   

5.
A wide range of environmental particulate matter (PM) both indoor and outdoor and consisting of natural and anthropogenic PM was collected by high volume air filters, electrostatic precipitation, and thermophoretic precipitation directly onto transmission electron microscope (TEM) coated grid platforms. These collected PM have been systematically characterized by TEM, energy-dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). In the El Paso, TX, USA/Juarez, Mexico metroplex 93% of outdoor PM1 is crystalline while 40% of PM1 is carbonaceous soot (including multiwall carbon nanotubes (MWCNTs) and multiconcentric fullerenes) PM. Multiply-replicated cytotoxicity (in vitro) assays utilizing a human epithelial (lung model) cell line (A549) consistently demonstrated varying degrees of cell death for essentially all PM which was characterized as aggregates of nanoparticulates or primary nanoparticles. Cytokine release was detected for Fe2O3, chrysotile asbestos, BC, and MWCNT PM while reactive oxygen species (ROS) production has been detected for Fe2O3, asbestos, BC, and MWCNT aggregate PM as well as natural gas combustion PM.Nanoparticulate materials in the indoor and outdoor environments appear to be variously cytotoxic, especially carbonaceous nano-PM such as multiwall carbon nanotubes, black carbon, and soot nano-PM produced by natural gas combustion.  相似文献   

6.
Zhu L  Feng S 《Chemosphere》2003,53(5):459-467
Water solubility enhancements of naphthalene (Naph), acenaphthylene (Acen), anthracene (An), phenanthrene (Phen) and pyrene (Py) by micellar solutions of single and mixed anionic-nonionic surfactants were measured and compared. Effects of typical inorganic ions, such as NH(4)(+), Na(+) and Mg(2+) coexisted with the organic pollutants (in soils) on water solubilities of polycyclic aromatic hydrocarbons (PAHs) in the presence of single and mixed surfactants were also investigated. Solubilities of PAHs in water are greatly enhanced in a linear fashion by each of Triton X-100 (TX100), Triton X-305 (TX305), Brij 35, and sodium dodecyl sulfate (SDS). Solubility enhancement efficiencies of surfactants above the critical micelle concentration (CMC) follow the order of TX100>Brij 35>TX305>SDS. PAHs are solubilized synergistically in mixed anionic-nonionic surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX305>SDS-Brij 35>SDS-TX100. Synergistic effect of a given mixed-surfactant solution on different PAHs also appears to be linearly related to the solute logK(ow). The noted synergism for the mixed surfactants is attributed to the formation of mixed micelles, the lower CMC of the mixed-surfactant solutions, and the increase of the solute's molar solubilization ratio or micellar partition coefficients (K(mc)) because of the lower polarity of the mixed micelles. Suitable quantity of inorganic cations can enhance the solubilization capacities of anionic-nonionic mixed surfactants, the effect being Mg(2+)>NH(4)(+)>Na(+). The water solubility of pyrene was slightly increased by anthracene and significantly increased by 1,2,3-TCB in the presence of SDS-Brij 35. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus the remediation cost.  相似文献   

7.
The SEM EDX backscattered electron (BSE) atomic number contrast has been largely used in this work, in combination with conventional secondary electron microanalysis, to investigate the presence of metal particles in airborne particulate collected at three sites (industrial, residential, and rural background) in the Po Valley (Italy). Individual particle x-ray microanalysis was used for this aim. In many cases, the presence of metal particles was not evident by secondary electron imaging and it was instead revealed by BSE detection. Metal particles were observed either as isolated (not clustered to other particles), or gathered together (homogeneous clusters). In addition, the BSE microanalysis put on evidence two main types of association of metals to other particulate components: heterogeneous clusters and metals embedded or enclosed in other materials. In this study, the first association (heterogeneous clusters) was observed mostly between Fe-bearing metallic particles and soot aggregates (or other carbonaceous particles) and it was found in the particulate matter (PM) of all studied sites. The second association, conversely, seems to be characterized by more selective relationships between composition/size of metal particles and type of other particulate components. These associations could be evidenced only when using the BSE Z-contrast and mainly concern three cases: (1) unusual silicate–carbonate mixed aggregates were observed at the industrial site only. In these aggregates, embedded Mn, Cr, Co, Bi, W, and Zr fine particles were selectively observed. (2) Ni and V rich ultrafine particles were only observed as embedded particles in the surface structure of carbon cenospheres. (3) Pb or Pb–Zn bearing fine and ultrafine particles were largely detected only in oxygenated organic aerosols in the ultrafine PM.  相似文献   

8.
9.
The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension.  相似文献   

10.
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

11.
改性多壁碳纳米管对水中Cd2+的去除   总被引:1,自引:0,他引:1  
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

12.
通过分析Floccky流变测试过程中不同持续剪切时间下调理污泥絮体的流变、几何和物理特征的变化,探讨了上述过程中絮体与聚集体之间的转化。结果表明,在zetag7557阳离子有机高分子絮凝剂的最佳调理投药量下,调理污泥体系的弹性网络结构的强度和耐剪切力达到最大。当絮凝剂投加到污泥悬浊体系中,大尺寸的聚集体立即出现,而且在一定范围内,随着持续剪切时间的延长,这些聚集体继续生长,此后,随着持续剪切进行,这些聚集体逐渐变成小甚至成为越来越小的絮体。在上述过程中,Floccky流变曲线上的扭矩值也呈现类似的变化趋势;弹性网络结构强度的极值出现在形成大尺寸聚集体的调理污泥体系中,但形成最大的聚集体或平均直径的调理污泥体系并不能保证弹性网络结构强度达到极值,而且调理污泥絮体分形维数的极值与Floccky流变曲线上特征峰的极值并不重合。此外,残余在悬浊体系中的zet-ag7557絮凝剂可以中和部分因调理污泥絮体剪切破碎后新出现的表面负电荷。  相似文献   

13.
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.  相似文献   

14.
《Chemosphere》2013,90(11):1316-1322
Carbon nanotubes (CNTs), as a type of superior adsorbents for both organic and inorganic contaminants, are increasingly introduced into the environment. Ubiquitous natural organic matter (NOM) would coat on the released CNTs and change their physicochemical properties and sorption of contaminants. The effects of four sequentially extracted humic acids (HAs, as a model NOM) from a peat soil on the physicochemical properties and Cd(II) sorption of three multiwalled CNTs (MWNTs) with different surface areas were investigated. The MWNTs as purchased with very few oxygen-containing functional groups had relatively low sorption capacities (0.93–1.49 mg g−1) for Cd(II) and the sorption capacity increased with increasing surface area of the MWNTs. Surface-coating with the HAs lowered surface areas of the MWNTs but greatly increased their sorption capacities (5.42–18.4 mg g−1). The MWNT-bound HAs introduced oxygen-containing functional groups and negative charges to the MWNT surfaces, which could thus increase the apparent sorption of Cd(II) through chemical complexation and electrostatic attraction, respectively. The later-extracted HAs with lower polarity were more favorable for the surface-coating but increased less Cd(II) sorption by the MWNTs. The results are expected to shed light on understanding the underlying mechanism of the effect of NOM on the sorption of heavy metal ions by CNTs.  相似文献   

15.
A new approach using an anionic/nonionic mixed surfactant, sodium dodecyl sulphate (SDS) with Triton X-100 (TX100), was utilized for the desorption of phenanthrene from an artificial contaminated natural soil in an aim to improve the efficiency of surfactant remediation technology. The experimental results showed that the presence of SDS not only reduced the sorption of TX100 onto the natural soil, but also enhanced the solubilization of TX100 for phenanthrene, both of which resulted in the distribution of phenanthrene in soil-water systems decreasing with increasing mole fraction of SDS in surfactant solutions. These results can be attributed to the formation of mixed micelles in surfactant solution and the corresponding decrease in the critical micelle concentration of TX100 in mixed solution. The batch desorption experiments showed that the desorption percentage of phenanthrene from the contaminated soil with mixed solution was greater than that with single TX100 solution and appeared to be positively related to the mole fraction of SDS in surfactant solution. Thus, the anionic/nonionic mixed surfactants are more effective for the desorption of phenanthrene from the contaminated soil than a single nonionic surfactant.  相似文献   

16.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

17.
Park JW  Henry TB  Menn FM  Compton RN  Sayler G 《Chemosphere》2010,81(10):1227-1232
The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure.  相似文献   

18.
To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 degrees C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4 x 6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons. Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.  相似文献   

19.
To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples.

In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 °C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer, Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4?×?6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons.

Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.  相似文献   

20.
配制气体样品是异味测试及相关研究的基础工作,配气稳定性直接影响测试结果准确度。三点比较式臭袋法使用微量进样针量取并转移液体标准物质到3L无臭气袋的传统配气方法。对于异味阈值较小物质或样品浓度处于较低范围时,为了降低取样体积波动对配气精度和稳定性的影响。提出先将标准注入100mL玻璃注射器,充分挥发混匀后再转移部分气体到无臭气袋的两步式配气方法。结果表明,2种配气方法的准确度不存在显著差异,但两步式配气法的配气稳定性明显优于传统方法。此外,研究还发现,常见异味物质在被注人气袋后3min内便能完全挥发并混合均匀。除一些挥发性和吸附性极强的物质外,气袋内的异味物质气体浓度能在配好后20min内基本保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号