首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
锑矿区土壤重金属污染及优势植物对重金属的富集特征   总被引:4,自引:0,他引:4  
通过野外调查采样,分析了冷水江锑矿区4个采样点土壤和优势植物中重金属含量,以及矿区生长的5种优势植物对Sb、As、Cd、Pb、Cu和Zn的的吸收与富集能力及其富集特性。结果表明,矿区土壤中6种重金属元素的平均含量均超出湖南省土壤背景值和全国土壤背景值,土壤受Sb污染最严重,其次是Cd、As的污染。5种优势植物淡竹叶、苎麻、芒草、狗尾草和白背叶体内Sb、As的含量都超过正常范围,具有修复矿区土壤Sb、As污染的潜力。其中苎麻对Sb的富集系数和转运系数均大于1,满足Sb超富集植物的基本特征,可作为生态恢复的先锋植物;芒草对Cd的富集系数和转运系数都大于1,对重金属有较强的耐性,作为重金属污染的修复植物具有较好的应用前景。  相似文献   

2.
As part of a larger program aiming at assessing transfer and effects of metals in food webs, this work studied the spatial distribution of Cd, Cr, Cu, Pb, and Zn in 101 sub-surface soils, systematically sampled (1 × 1 km regular grid) over a large area around Annaba, the fourth most-populated city of Algeria. Cd and Cr exhibited only one abnormally high value, with all other concentrations being close to pedogeological background. Some places in the centre of the city were polluted by Pb (up to 823 mg kg−1), probably due to aerial deposition from gasoline exhausts. Zn never exceeded regulatory limits over the whole sampling area. Cu was the only element for which a spatial autocorrelation occurred. A spatial interpolation by cokriging allowed the identification of agricultural activities as the main Cu pollution source. Our approach revealed various anthropogenic pollution sources, more efficiently for large-scale patterns than for local abnormalities.  相似文献   

3.
Abstract

Wheat is more sensitivity to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 μg/g Cd at the Cd 10,000 ppm in soil. This value is higher the value of 4.97 μg/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, as concentration of more than 1.0 μg/g Cd in wheat was obsertced at 5 ppm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.  相似文献   

4.
Heavy metal contamination has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study proposes a regression-tree model to predict the concentration level of zinc in the soils of northern Lebanon (as a case study of Mediterranean landscapes) under a GIS environment. The developed tree-model explained 88% of variance in zinc concentration using pH (100% in relative importance), surroundings of waste areas (90%), proximity to roads (80%), nearness to cities (50%), distance to drainage line (25%), lithology (24%), land cover/use (14%), slope gradient (10%), conductivity (7%), soil type (7%), organic matter (5%), and soil depth (5%). The overall accuracy of the quantitative zinc map produced (at 1:50.000 scale) was estimated to be 78%. The proposed tree model is relatively simple and may also be applied to other areas.  相似文献   

5.
Plant uptake and dissipation of weathered PBDEs in the soils of e-waste recycling sites were investigated in a greenhouse study. Eighteen PBDE congeners (tri- through deca-) were detected in the plant tissues. The proportion of lower brominated PBDEs (mono- through hexa-) in plant roots was higher than that in the soils. A concentration gradient was observed of PBDEs in plants with the highest concentrations in the roots followed by the stems and lowest in the leaves. Reduction rates of the total PBDEs in the soils ranged from 13.3 to 21.7% after plant harvest and lower brominated PBDEs were associated with a higher tendency to dissipate than the higher brominated PBDEs. This study provides the first evidence for plant uptake of weathered PBDEs in the soils of e-waste recycling sites and planting contributes to the removal of PBDEs in e-waste contaminated soils.  相似文献   

6.
Several factors depending on the sludge, the soil, or the combination of both substrates, may affect element availability to plants. In this study, an assessment was done of the effect of two sludges obtained by different processes (activated sludge and facultative stabilization pond) on heavy-metal availability and uptake by sorghum plants in soils with high and low copper contents. Results obtained for DTPA-extractable metal indicated higher metal availability in sludge-amended soils. In addition, sludges caused changes in copper and zinc distribution in soil, indicating in most cases a discrete increase in the more labile metal forms. However, observed changes did not increase heavy metal concentration in plant leaves, indicating that assessment of metal availability by a chemical procedure (single extraction or metal fractionation) would not permit a good prediction of metal bioavailability. On the other hand, sludge application at a rate of 100 t ha−1 to high-copper agricultural soils would not imply greater mobility of this metal on account of a greater sorbing capacity provided by the sludges. Such results would indicate that sludges from wastewater treatment plants, meeting the standards of heavy metal contents, regardless of the process by which they were obtained, may be applied to several kinds of soil, even to high-copper soils, with no risk of increasing heavy metal bioavailability to phytotoxic levels in the short range.  相似文献   

7.
Li Y  Zhou Q  Wang Y  Xie X 《Chemosphere》2011,82(2):204-209
The fate of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane diastereomers (α-, β-, and γ-HBCD) and uptake by plants (cabbage and radish) was investigated. In a short-term (8 weeks) experiment, sorption to soil matrix resulted in 90% decline in recovery of these compounds in the experimental soil. However, nearly 50% of initial HBCDs recovered in mixed cabbage-radish treatments, which suggested that interspecific plant interactions might enhance the bioavailability of HBCDs. Although both plant species could uptake TBBPA and HBCDs, cabbage showed greater accumulating ability. Up to 3.5-10.0-fold higher HBCD concentrations were observed than TBBPA concentrations in all plant tissues, and the distribution of HBCDs in plant tissues was diastereomer-specific. The predominance of α-HBCD in shoot tissues for both species might be attributed to diastereomer-specific translocation of HBCDs, shift in diastereomer pattern and/or selective metabolization of γ-HBCD within plants. The results showed that strong sorption to soil particles reduced the potential of human exposure to BFRs in the soil. However, plants increased the exposure risk by uptaking these compounds and by enhancing their bioavailability. The results also provide insight into transport mechanisms of TBBPA and HBCD diastereomers in soil-plant systems.  相似文献   

8.
Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal–oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly.  相似文献   

9.
Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe.  相似文献   

10.
Anthropogenic sources of toxic elements have had serious ecological and human health impacts. Analysis of the soil samples from a brownfield within Liberty State Park, Jersey City, NJ, USA, showed that arsenic, chromium, lead, zinc and vanadium exist at concentrations above those considered ambient for the area. Accumulation and translocation features were characterized for the dominant plant species of four vegetative assemblages. The trees Betula populifolia and Populus deltoides were found to be accumulating Zn in leaf tissue at extremely high levels. B. populifolia, P. deltoides and Rhus copallinum accumulated Cr primarily in the root tissue. A comparison of soil metal maps and vegetative assemblage maps indicates that areas of increasing total soil metal load were dominated by successional northern hardwoods while semi-emergent marshes consisting mostly of endemic species were restricted primarily to areas of low soil metal load.  相似文献   

11.
Lee WM  Kwak JI  An YJ 《Chemosphere》2012,86(5):491-499
Understanding some adverse effects of nanoparticles in edible crop plants is a matter of importance because nanoparticles are often released into soil environments. We investigated the phytotoxicity of silver nanoparticles (AgNPs) on the important crop plants, Phaseolus radiatus and Sorghum bicolor. The silver nanoparticles were selected for this study because of their OECD designation as a priority nanomaterial. The toxicity and bioavailability of AgNPs in the crop plant species P. radiatus and S. bicolor were evaluated in both agar and soil media. The seedling growth of test species was adversely affected by exposure to AgNPs. We found evidence of nanoparticle uptake by plants using electron microscopic studies. In the agar tests, P. radiatus and S. bicolor showed a concentration dependent-growth inhibition effect. Measurements of the growth rate of P. radiatus were not affected in the soil studies by impediment within the concentrations tested herein. Bioavailability of nanoparticles was reduced in the soil, and the dissolved silver ion effect also differed in the soil as compared to the agar. The properties of nanoparticles have been shown to change in soil, so this phenomenon has been attributed to the reduced toxicity of AgNPs to plants in soil medium. The application of nanoparticles in soil is a matter of great importance to elucidate the terrestrial toxicity of nanoparticles.  相似文献   

12.
Transfer of bioactive organic compounds from soil to plants might represent animal and human health risks. Sewage sludge and manure are potential sources for bioactive compounds such as human- and veterinary drugs. In the present study, uptake of the anti-diabetic compound, metformin, the antibiotic agent ciprofloxacin and the anti-coccidial narasin in carrot (Daucuscarota ssp. sativus cvs. Napoli) and barley (Hordeumvulgare) were investigated. The pharmaceuticals were selected in order to cover various chemical properties, in addition to their presence in relevant environmental matrixes. The root concentration factors (RCF) found in the present study were higher than the corresponding leaf concentration factors (LCF) for the three test pharmaceuticals. The uptake of metformin was higher compared with ciprofloxacin and narasin for all plant compartments analyzed. Metformin was studied more explicitly with regard to uptake and translocation in meadow fescue (Festucapratense), three other carrot cultivars (D.carota ssp. sativus cvs. Amager, Rothild and Nutri Red), wheat cereal (Triticumaestivum) and turnip rape seed (Brassicacampestris). Uptake of metformin in meadow fescue was comparable with uptake in the four carrot cultivars (RCF 2-10, LCF approximately 1.5), uptake in wheat cereals were comparable with barley cereals (seed concentration factors, SCF, 0.02-0.04) while the accumulation in turnip rape seeds was as high as 1.5. All three pharmaceuticals produced negative effects on growth and development of carrots when grown in soil concentration of 6-10 mg kg−1 dry weight.  相似文献   

13.
A forested brownfield within Liberty State Park, Jersey City, New Jersey, USA, has soils with arsenic, chromium, lead, zinc and vanadium at concentrations above those considered ambient for the area. Using both satellite imagery and field spectral measurements, this study examines plant productivity at the assemblage and individual specimen level. Longer term growth trends (basal area increase in tree cores) were also studied. Leaf chlorophyll content within the hardwood assemblage showed a threshold model for metal tolerance, decreasing significantly beyond a soil total metal load (TML) of 3.0. Biomass production (calculated with RG - Red/Green Ratio Index) in Betula populifolia (gray birch), the co-dominant tree species, had an inverse relationship with the Zn concentration in leaf tissue during the growing season. Growth of B. populifolia exhibited a significant relationship with TML. Assemblage level NDVI and individual tree NDVI also had significant decreases with increasing TML. Ecosystem function measured as plant production is impaired at a critical soil metal load.  相似文献   

14.
Meneses M  Schuhmacher M  Domingo JL 《Chemosphere》2002,46(9-10):1393-1402
The vegetation and soil levels of the 17 polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) toxic congeners were calculated by means of a vegetation and a soil model, respectively. Both models predicted the levels of the 17 PCDD/F congeners in quite good agreement with the observed results although the soil model was more accurate than the vegetation model. Four different pathways of contribution to the vegetation concentrations were taken into account: vapour-phase absorption, dry particle deposition, wet particle deposition and uptake by root. The most important pathway was the vapour-phase absorption and the less was the uptake by root. In the soils model four pathways were considered: background soil concentration, dry particle deposition, wet particle deposition and uptake by root. After the background concentration, the most important pathway was the wet deposition.  相似文献   

15.
Metalliferous soils cover a relatively large surface area in Morocco, and up to now no hyperaccumulating plants have been identified on these mining or these industrial sites. The aim of this work was to assess the extent of metal accumulation by plants found in three mining areas in southern Morocco with the ultimate goal of finding metal hyperaccumulating species by using the MetPAD biotest. The biotest helps to obtain information on the selective metal toxicity of aqueous extracts from the plants. A strong metal toxicity, as revealed by the biotest is an indication of a hyperaccumulating plant. Toxicity tests were run concurrently with chemicals analyses of metals in plants and their water extracts. The chemical analyses allow the determination of the hyperaccumulated metal(s). Specimens of the plant species mainly growing on and in the vicinity of the three mines were sampled with their corresponding soils. The results show that all plants analyzed had lower heavy metal content and toxicity despite the relatively very high soil concentrations. A comparison of our results with the criterion used to classify the hyperaccumulator plants indicates that plants we collected from mining sites were hypertolerant but not hyperaccumulators. This was confirmed by transfer factors generally lower than 1. Nevertheless, these tolerant plants species can be used as tools for revegetation for erosion control in metals-contaminated sites (phytostabilization).  相似文献   

16.
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P相似文献   

17.
Environmental Science and Pollution Research - Sewage sludge (SS) production in China has increased rapidly, accompanying the fast expansion of its sewage treatment capacity. Heavy metals (HMs) in...  相似文献   

18.
Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities.  相似文献   

19.
To investigate interspecific and intersex differences in heavy metal levels, we analysed concentrations of cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc in the livers of male and female black duck (Anas rubripes), mallard (A. platyrhynchos) and greater scaup (Aythya marila) collected in Raritan Bay, New Jersey in December 1980 and January 1981. Certain metal levels varied significantly by species and sex. In all species, Zn and Cu had the highest concentrations, and Cd, Co, and Hg were lowest in all three species. Scaup had significantly higher levels of Cu than black ducks and mallards, and mallards had significantly higher levels of Mn and Zn than black duck and scaup. Overall, eight of nine metal levels were higher in male than female black duck. In scaup, females had significantly higher levels of Pb and Mn than males. In black ducks, males had significantly higher levels of Cu, Mn and Zn than females. The sample of mallard was too small to test intersex differences.  相似文献   

20.

The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号