首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/Ci measurements monthly during the 2004-2008 growing seasons. Our results suggest that the responses of two aspen clones differing in O3 sensitivity showed no evidence of photosynthetic and stomatal acclimation under either elevated CO2, O3 or CO2 + O3. Both clones 42E and 271 did not show photosynthetic nor stomatal acclimation under elevated CO2 and O3 after a decade of exposure. We found that the degree of increase or decrease in the photosynthesis and stomatal conductance varied significantly from day to day and from one season to another.  相似文献   

2.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   

3.
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO2]) and elevated ozone concentration ([O3]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO2] and [O3] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO2 fumigation had begun, but O3 fumigation had not. Trees in elevated [CO2] plots showed a stimulation of leaf area index (36%), while trees in elevated [O3] plots had lower leaf area index (−20%). While individual leaf area was not significantly affected by elevated [CO2], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO2]; however, the two clones responded differently to long-term growth at elevated [O3]. The O3-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O3] (−32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O3] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O3], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.  相似文献   

4.
The forest hydrologic budget may be impacted by increasing CO2 and tropospheric O3. Efficient means to quantify such effects are beneficial. We hypothesized that changes in the balance of canopy interception, stem flow, and through-fall in the presence of elevated CO2 and O3 could be discerned using image analysis of leafless branches. We compared annual stem flow to the results of a computerized analysis of all branches from the 2002, 2004, and 2006 annual growth whorls of 97 ten-year-old trees from the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) experiment in Rhinelander, WI. We found significant effects of elevated CO2 and O3 on some branch metrics, and that the branch metrics were useful for predicting stem flow from birch, but not aspen. The results of this study should contribute to development of techniques for efficient characterization of effects on the forest hydrologic budget of increasing CO2 and tropospheric O3.  相似文献   

5.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   

6.
The effects of elevated concentrations of atmospheric tropospheric ozone (O3) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO2) were examined. Growing season mean hourly O3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O3 concentrations were 79 and 89 ppb, respectively. Elevated CO2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O3 and CO2 in combination with O3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O3 tolerance or sensitivity.  相似文献   

7.
The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO2 and/or O3 in relation to stomatal conductance (gs), water potential, intercellular [CO2], leaf temperature and vapour-pressure difference between leaf and air (VPDL) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased gs and decreased Rubisco carboxylation efficiency, Vcmax. As a result of increasing VPDL, gs decreased. Elevated [CO2] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO2 treatment.The positive impact of CO2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases.  相似文献   

8.
The emission of isoprene (2-methyl-1,3-butadiene) by terrestrial vegetation is an important biosphere–atmosphere exchange which significantly impacts tropospheric chemistry. Isoprene emissions from Chapman oak (Quercus chapmanii) grown for over two years in elevated CO2 levels were measured and compared to emissions from trees grown in ambient CO2 levels in identical open-topped chambers, and emissions from ambient-grown trees were compared to emissions from trees grown in chamberless control plots. Emission rates were adjusted to 30 μmol m−2 s−1 of light intensity and 30°C, and standard T-tests were performed to compare emission rates. No significant differences in isoprene emission were found in ambient vs. elevated CO2 grown trees, while emissions from ambient vs. control trees showed a significant chamber effect.  相似文献   

9.
A system has been developed to automatically measure the effects of air pollutants in the ambient air on the rate of CO2 exchange by intact leaves of citrus trees growing in the field. A miniaturized system utilizing the same nondispersive infrared CO2 analyzer has been designed to study individually the effects of different concentrations of air pollutants on photosynthesis and respiration by plants.  相似文献   

10.
Two silver birch clones were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO2 and O3 on stomatal conductance (gs), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O3 response in silver birch, while crown position and clone played only a minor role. Elevated CO2 reduced the gs, but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO2 and O3 were found. The infection biology of P. betulicola was not correlated with SD or gs, but it did occasionally correlate positively with the length of the guard cells.  相似文献   

11.
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies and sun leaves in closed aspen and aspen-birch forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin. Stomatal conductance for O3 was derived from sap flux data and AFst was estimated either neglecting or accounting for the potential influence of non-stomatal leaf surface O3 deposition. Leaf-level AFst (AFstl) was not reduced by elevated CO2. Instead, there was a significant CO2 × O3 interaction on AFstl, as a consequence of lower values of gs in control plots and the combination treatment than in the two single-gas treatments. In addition, aspen leaves had higher AFstl than birch leaves, and estimates of AFstl were not very sensitive to non-stomatal leaf surface O3 deposition. Our results suggest that model projections of large CO2-induced reductions in gs alleviating the adverse effect of rising tropospheric O3 may not be reasonable for northern hardwood forests.  相似文献   

12.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

13.
To investigate the interactive effects of increasing [CO2] and heat wave occurrence on isoprene (IE) and methanol (ME) emissions, Platanus orientalis was grown for one month in ambient (380 μmol mol−1) or elevated (800 μmol mol−1) [CO2] and exposed to high temperature (HT) (38 °C/4 h). In pre-existing leaves, IE emissions were always higher but ME emissions lower as compared to newly-emerged leaves. They were both stimulated by HT. Elevated [CO2] significantly reduced IE in both leaf types, whereas it increased ME in newly-emerged leaves only. In newly-emerged leaves, elevated [CO2] decreased photosynthesis and altered the chloroplast ultrastructure and membrane integrity. These harmful effects were amplified by HT. HT did not cause any unfavorable effects in pre-existing leaves, which were characterized by inherently higher IE rates. We conclude that: (1) these results further prove the isoprene's putative thermo-protective role of membranes; (2) HT may likely outweigh the inhibitory effects of elevated [CO2] on IE in the future.  相似文献   

14.
Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 × ambient), O3 (1.2 × ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO2 and O3 increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO2. Cuticular ridges and epicuticular wax crystallites were less evident under CO2 and CO2 + O3. The increase in amorphous deposits, particularly under CO2 + O3, was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO2 + O3. The combination of elevated CO2 and O3 resulted in different responses than expected under exposure to CO2 or O3 alone.  相似文献   

15.
Atmospheric CO2 concentrations are predicted to double within the next century and alter climate regimes, yet the extent that these changes will affect plant diseases remains unclear. In this study conducted over five years, we assessed how elevated CO2 and interannual climatic variability affect Cercospora leaf spot diseases of two deciduous trees. Climatic data varied considerably between the five years and altered disease expression. Disease incidence and severity for both species were greater in years with above average rainfall. In years with above average temperatures, disease incidence for Liquidambar styraciflua was decreased significantly. When significant changes did occur, disease incidence and severity always increased under elevated CO2. Chlorophyll fluorescence imaging of leaves revealed that any visible increase in disease severity induced by elevated CO2 was mitigated by higher photosynthetic efficiency in the remaining undamaged leaf tissue and in a halo surrounding lesions.  相似文献   

16.
Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.  相似文献   

17.
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l?1) or elevated (800 μl l?1) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.  相似文献   

18.
Naturally regenerated, 30-year-old Scots pines (Pinus Sylvestris L.) were grown in open-top chambers and exposed in situ to doubled ambient O(3), doubled ambient CO(2) and a combination of elevated O(3) and CO(2) from 15 April to 15 September for three growing seasons (1994-1996). To examine the effects of O(3) and/or CO(2) on photosynthesis, chlorophyll a fluorescence and gas exchange were measured simultaneously. Doubled ambient O(3) significantly decreased the rates of photosynthesis at all levels of photon flux density. This was related mainly to a significant decrease in the photochemical efficiency of photosystem II (PS II) and the rate of whole electron transport, rather than to a decrease in stomatal conductance. When measurements were made at doubled ambient concentration of CO(2) (700 micromol mol(-1)), doubled ambient CO(2) treatment did not lead to a significant change in the intrinsic capacity of photosynthesis, as manifested by no changes in PS II, the rate of electron transport, the maximal rate of photosynthesis and the apparent quantum yield of CO(2) assimilation. However, elevated CO(2) increased the sensitivity of stomatal conductance to light and decreased maximal stomatal conductance. When O(3) and CO(2) were combined, the O(3)-induced decrease in photosynthesis rate was reduced significantly by a high concentration of CO(2). This may be partly related to the decrease in stomatal conductance induced by the high concentration of CO(2). The complete mechanism behind this interaction is, however, still unclear.  相似文献   

19.
Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO2 and O3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O3, alone or in combination with CO2. O3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO2 + O3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O3 treatment, indicating that CO2 cannot totally alleviate the harmful effects of O3.  相似文献   

20.
Abstract

Toxic agents may affect photosynthesis either by altering the diffusion of CO2 to the photosynthesizing cells or by altering the chloroplast activity for CO2 fixation. Therefore, the effect of toxic chemicals can be assessed by measurement of the rate of CO2 fixation. The effects on photosynthesis caused by altered CO2 diffusion can be distinguished from those caused at the chloroplast level by evaluating the CO2 concentration inside the leaf. If CO2 concentrations remain constant or rise as photosynthesis declines, the inhibition must act on chloroplast activity. If the CO2 concentrations decrease as photosynthesis declines, the inhibition may be caused by slower diffusion of CO2into the leaf. The latter possibility would suggest a stomatal closure to be the most probable cause of the decline of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号