首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/137Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the 239,240Pu/137Cs ratio in seawater exponentially increased with increasing depth (depth range: 100–1000 m). This finding suggests that the profiles of the 239,240Pu/137Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.  相似文献   

2.
Following the Chernobyl accident, 137Cs contamination levels of wild boar in some districts of Southern Germany are still exceeding thousands of Bq kg−1. While the long term 137Cs concentration in forest plants, mushrooms, and roe deer meat has decreased significantly, for wild boar it has remained constant during the last decade. Between 1998 and 2008, we analysed the muscle meat of 656 wild boars shot in the district (“Landkreis”) Ravensburg. The 137Cs activity concentration showed considerable variability from less than 5 up to 8266 Bq kg−1 and it followed a seasonal pattern, which is attributed to changes in dietary habits, fodder availability, meteorological conditions and specific behaviour of 137Cs in wild boar organism. Tag values for wild boars from the district Ravensburg varied from 0.008 to 0.062 m2 kg−1 during 2000–2008.  相似文献   

3.
The transfer of 137Cs into fish in seepage and drainage lakes from 1988 to 1992 was analysed using linear regression. Empirical results for 137Cs in lake water and fish were used to calculate concentration factors (CFs). In the drainage lakes the CF decreased during the study period by 9% per year whereas in the seepage lakes the CF increased significantly by 4.3% per year. The transfer of 137Cs into pike was significantly (1.6 times) higher than that into perch. The CF increased on average by 3.4% for each 1-cm increase in the median size of perch. The relationship between the water chemistry and the CF differed between clear-water seepage and brown-water drainage lakes.  相似文献   

4.
An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium (133Cs and 137Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133Cs mass concentrations with 137Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg−1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg−1 for Rb, 8.7 ± 4.36 mg kg−1 for 133Cs and 63.7 ± 24.2 kBq kg−1 for 137Cs. The mass concentrations of 133Cs correlated with 137Cs activity concentrations (r = 0.61). There was correlation between both 133Cs concentrations (r = 0.75) and 137Cs activity concentrations (r = 0.44) and Rb, but the 137Cs/133Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133Cs mass concentrations, 137Cs activity concentrations and 137Cs/133Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133Cs and 137Cs in sporocarps of S. variegatus is similar to other fungal species.  相似文献   

5.
Fallout 137Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of 137Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia. Floodplain and reference site cores were analysed in two centimetre increments, depth profiles were produced and total 137Cs inventories calculated from the detailed profile data. Information on the rates of 137Cs migration through local soils was obtained from the reference site soil cores. This data was used in an advection–diffusion model to account of 137Cs mobility in floodplain sediment cores. This allowed sedimentation rates to be determined without the first year of detection for 137Cs being known and without having to assume that 137Cs remains immobile following deposition. Caesium-137 depth profiles in this environment are demonstrated to be an effective way of determining floodplain sedimentation rates. The total 137Cs inventory approach was found to be less successful, with only one of the three sites analysed being in unequivocal agreement with the depth profile results. The input of sediment from catchment sources that have little, or no, 137Cs attached results in true depositional sites having total inventories that are not significantly different from those of undisturbed reference sites.  相似文献   

6.
The aim of this study was to measure the 137Cs activity derived from the Chernobyl accident in the water system of Lake Wallersee, a pre-Alpine lake in Austria within an area highly contaminated by the Chernobyl fallout.  相似文献   

7.
The vertical distribution of 137Cs activity in peat soil profiles and 137Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004–2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of 137Cs in 2005 was similar at both sites, 23?000 Bq m−2. In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of 137Cs activity was found in the uppermost 1–4 cm of Sphagnum layers, whereas at the low pine site 137Cs was mainly found in deeper (10–12 cm) layers. The migration rate was 0.57 cm yr−1 at the open bog site and the migration centre of 137Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr−1 and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest 137Cs activity concentrations at both sites, 43.5 k Bq−1 DM in 1989 decreasing to 20.4 in 2004–2007 on open bog and 22.3 k Bq kg−1 DM in 1989 decreasing to 11.2 k Bq−1 DM by the period 2004–2007 on the low pine site. 137Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m2 kg−1 DM at the low pine site.  相似文献   

8.
Specific features of 137Cs accumulation, transformation, and migration in humus-peaty and peaty-gley soils of transitional bogs are discussed with reference to the southwestern part of the Russian Federation, which was most heavily contaminated after the Chernobyl accident. The influence of physicochemical soil properties and concentrations of typomorphic elements on these processes is characterized. It is concluded that bog soils accumulate 137Cs in the form of hardly movable compounds and, as a consequence, transitional bogs are transformed into critical ecosystems.  相似文献   

9.
This work presents a first estimation of the sedimentation rate for the Red Lake (Romania). The sediment accumulation rates were determined by two well-known methods for recent sediment dating: 210Pb and 137Cs methods. Both techniques implied used the gamma emission of the above-mentioned radionuclides. The 210Pb and 137Cs concentrations in the sediment were measured using a gamma spectrometer with a HpGe detector, Gamma-X type. Activities ranging from 41 ± 7 to 135 ± 34 Bq/kg were found for 210Pb and from 3 ± 0.5 to 1054 ± 150 Bq/kg for 137Cs. The sediment profile indicates acceleration in sedimentation rate in the last 18 years. Thus, the sedimentation process for the Red Lake can be divided in two periods, the last 18 years, and respectively, the period before that. Using the Constant Rate of 210Pb Supply method values between 0.18 ± 0.04 and 1.85 ± 0.5 g/cm2 year (0.32 ± 0.08 and 2.83 ± 0.7 cm/year) were obtained. Considering both periods, an average sedimentation rate of 0.87 ± 0.17 g/cm2 year (1.17 cm/year) was calculated. Considering an average depth of 5.41 m for the lake and the sedimentation rate estimated for the last 18 years, it could be estimated that the lake will disappear in 195 years.  相似文献   

10.
The present work presents the results of 137Cs concentration in seawater, fish and sediments samples collect in 11 sampling points, crossing the Brazilian Southeastern coastal region, from Vitória (ES) to Santos (SP), on a routine basis from 1997 to 2002. This monitoring program was carried out by the Instituto de Radioproteção e Dosimetria (IRD/CNEN/MCT), in cooperation with the Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM/Brazilian Navy), aiming at determining artificial radionuclides in marine samples. Additionally to the 137Cs results, 90Sr concentrations in fish samples from 1998 to 2002 are also reported.The 137Cs in seawater follows a lognormal distribution, with a geometric mean of 1.8 Bq m-3 and a geometric standard deviation of 1.4 (n=54), decay corrected to June/2002. For 137Cs levels in fish samples a geometric mean of 0.19 Bq kg−1 and a geometric standard deviation of 2.9 (n=39), decay corrected to June/2002, with a range of 0.03 to 1.7 Bq kg−1, were obtained. Based on the 137Cs mean concentration in fish as well as in seawater, a transfer factor of 1 × 102 was calculated, which is quite in agreement with the recommended value found in the Safety Report Serie 19.  相似文献   

11.
Liming of lakes is considered one possible remedial action to reduce the accumulation of radionuclides into fish in the case of a radiological accident. These responses were tested in field conditions in a small acidified lake that was divided into two parts: one limed with CaCO3 and the other half left as an unlimed control. The transfer of 90Sr from water into fish decreased on average by 50% during the first year after liming. However, at the same time the 90Sr concentration in water increased, reaching a maximum within 6 months after liming. Approximately 50% more 90Sr was detected in water in the limed part of the lake than on control side during the first year. 90Sr was most probably released from the sediment as the Ca concentration and pH of the water increased. As a result of these two processes, which counterbalanced each other (increased release of 90Sr into water from sediment and decreased transfer of 90Sr from water into fish), the 90Sr concentration in fish did not notably differ between the limed and control sides of the lake. Liming may only be suitable as a remedial action if carried out immediately after a radiological accident, before significant amounts of radionuclides have been deposited in lake sediments. In the case of 137Cs, the effect of liming was less pronounced. 137Cs activity concentration in water increased in the first year by 20% and uptake by fish decreased by 20%.  相似文献   

12.
137Cs and 60Co, two of the radionuclides more representative of discharges from nuclear facilities, are of interest for radiological protections because of their great mobility in biosphere and affinity with biological systems. The aim of the present work is the investigation of the possible influence of the vertical distribution of 137Cs and 60Co in soil upon their uptake by lettuce as function of plant's growth. An experiment ad hoc has been carried out in field conditions. The results show that (i) the transfer of 137Cs and 60Co from soil to lettuce is independent by their distribution in soil, (ii) the soil–plant transfer factors of 137Cs and 60Co show a similar trend vs. growth stage, (iii) the 40K transfer factor trend is different from those of anthropogenic radionuclides, and (iv) 137Cs and 60Co specific activities are about 1 Bq/kg, in the mature vegetable with soil activity from 9 to 21 kBq/m2.  相似文献   

13.
Tests using reconstituted samples have been performed to assess the diffusive transport of 137Cs and 60Co through natural regolith materials from a region in South Australia being considered for a radioactive waste repository. A double diffusion cell apparatus made of polycarbonate resin was developed to estimate the effective diffusion (De) and sorption coefficients (Kd) that allowed large withdrawals from the source and collector cells and has enabled tests with low concentrations of radioactivity. An alternative to porous stainless steel filter plates has also been used to reduce uncertainty in test interpretation. Analysis of the transient data used a staged method of the Laplace transform to take into consideration the volume of the samples withdrawn from the apparatus during testing. At test completion samples were cut into slices and analysed for radionuclide concentration. Data obtained from the sliced samples confirmed that both numerical and experimental data produced acceptable mass balance. The De values obtained in this study were of the order of 10−6 cm2 s−1 for both species, higher than previously published data. The Kd values from the diffusion and batch sorption tests were in reasonable agreement for 137Cs, but an order of magnitude different for 60Co. The sorption of the latter radionuclide was strongly pH dependent, and this dependency during diffusion tests would benefit from further investigation.  相似文献   

14.
Samples of summer pasture plants that reindeer feed on were collected in order to study 137Cs concentrations in different plant species and in species nested in certain site types, and to study the regional distribution of 137Cs in the Finnish reindeer management area. Plant species were categorized by the site types of mineral soil forest (xeric heath forest and mesic heath forest) and peatland. A third category called ’other plant species’ included plants with various site types, poorly determined species and species with poor statistics. The 137Cs concentrations in different site types differed significantly. The mean 137Cs concentrations of the whole reindeer management area in the xeric heath forest plant species was 44 ± 27 Bq/kg dw, in the mesic heath forest plant species 75 ± 59 Bq/kg dw and in the peatland plant species 219 ± 150 Bq/kg dw. The peatland species uptake 137Cs more efficiently than plant species of mineral soil forests. A particularly efficient collector of 137Cs was Trichophorum sp. It is suggested that Trichophorum sp. could be used as an indicator species for reindeer summer fodder plants. The highest concentrations of 137Cs were found in Southern Lapland and the lowest in Northern Lapland. Today, the concentrations of 137Cs in summer pasture plants that reindeer feed on in Finland are at such a level that there is no need to avoid any plant species. In the case of future nuclear fallout, reindeer grazing in peatlands would increase concentrations of 137Cs in reindeer meat.  相似文献   

15.
Fruiting bodies of fungi belonging to more than 70 species were collected within a few thousand square meter area of one forest during 2006 and 2007. The soil profile was collected to check the cumulative deposition of 137Cs, which was relatively high, equal to 64 ± 2 kBq/m2 (calculated for October 2006). The majority of this activity was in the first 6 cm. Fruitbodies were analyzed for radiocesium and 40K by means of gamma-spectrometry. The highest 137Cs activity was 54.1 ± 0.7 kBq/kg (dry weight) for a sample of Lactarius helvus collected in 2006. The results for 2006 were higher than those for 2007. In a few cases the traces of short-lived (T1/2 = 2.06 a) 134Cs were still found in samples. The importance of mycorrhizal fungi for radiocesium accumulation is confirmed. The differences in activity among the species are discussed in relation to observations and predictions from previous studies, where the change in relative accumulation between fruiting bodies of different species was at least partially explained by the differences in the depth of the mycelium localization in a litter/soil system. It is concluded that in some cases, such as Boletus edulis and Xerocomus badius, this prediction is fulfilled and therefore this explanation confirmed.  相似文献   

16.
17.
The role of puddle sediments as a final depot of 137Cs horizontal migration within the urban landscape is studied using the example of Ekaterinburg city, Russia. Radioactive contamination in the city appeared due to fallout after atmospheric testing of nuclear weapons and nuclear accidents. Contamination density of 137Cs in the region was assessed from archive data to be about 5.1 kBq/m2, of which the maximum activity concentration (<30 Bq/kg) is associated with the upper 15 cm soil layer. Results of the survey reported here indicate a mean 137Cs activity concentration in puddle sediments of 80 Bq/kg, with a maximum value of 540 Bq/kg. It is estimated that horizontal migration has led to about a fourfold concentration of 137Cs in puddle sediments.  相似文献   

18.
A dynamic model of radionuclide accumulation in fish is developed. In the model, the fish population is represented by a set of discrete age classes. Each age class is characterized by a specific growth rate, diet and activity of metabolic processes. The model describes all known types of size effect in the contamination of fish with radiocaesium. The detailed dynamics of 137Cs accumulation by fish are demonstrated using the results of the model's application to ichtiofauna in a water body which has a high level of contamination with radiocaesium — namely, the cooling pond of the Chernobyl NPP.  相似文献   

19.
Between 1986 and 1994, a decrease in nonalimentary 90Sr and 137Cs intake and changes in the accessibility of radionuclides in the soil-plant link of their cycle resulted in a 10-to 100-fold decrease in their specific activity (SA) in the bodies of small mammals inhabiting the Chernobyl zone, and a similar decrease was observed in the radionuclide transition factor (TF) in the soil-animal chain. Between 1995 and 2005, no consistent increase or decrease in SA or TF could be revealed against the background of a combined effect of different physicochemical and ecological factors. It is suggested that subsequent changes in the level of radioactive contamination of small mammals will generally reflect only the dynamics of physical 90Sr and 137Cs decay, but, nevertheless, seasonal and local variations in this level will be significant.  相似文献   

20.
Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号