首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nuclear power plants release 14C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of 14C in soils taken within 1 km from a Brazilian nuclear power plant with soils taken within a reference area located 50 km away from the reactor site. Analyses of total carbon, δ13C and 137Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The 137Cs data show that the soils from the base of hills are probably allocthonous.  相似文献   

2.
Three rates of Ca(OH)2 were applied to an acid soil and the 134Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The 134Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH)2 rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased 134Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on 134Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca2+ concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of 134Cs in the soil matrix and consequently lowered the 134Cs availability for plant uptake.  相似文献   

3.
Plant uptake of 99Tc freshly added to soils was compared with uptake of 99Tc ‘aged’ in soil for more than a decade. A combination of alkaline soil and freshly added 99Tc resulted in elevated uptake into radish foliage (plant/soil concentration ratios ranged from 37 to 46). Neptunium-237 was freshly added to all soils. Neptunium uptake via plant roots into foliage was strongly affected by soil pH. Neptunium uptake was greatest from acidic soils. The observed plant/soil concentration ratios for 237Np under field conditions were approximately 10−2 from acidic soils (pH 5·6–5·7) and were comparable to field concentration ratios for 239Pu, that is 10−3, from a basic soil (pH 7·5).  相似文献   

4.
A dynamic compartment model was investigated to describe 14C accumulation in rice plants exposed to atmospheric 14C with temporally changing concentrations. In the model, rice plants were regarded to consist of three compartments: the ear and the mobile and immobile carbon pools of the shoot. Photosynthetically fixed carbon moves into the ear and the mobile carbon pool, and these two compartments release a part of this carbon into the atmosphere by respiration. Carbon accumulated in the mobile carbon pool is redistributed to the ear, while carbon transferred into the immobile carbon pool from the mobile one is accumulated there until harvest. The model was examined by cultivation experiments using the stable isotope, 13C, in which the ratios of carbon photosynthetically fixed at nine times during plant growth to the total carbon at the time of harvest were determined. The model estimates of the ratios were in relatively good agreement with the experimental observations, which implies that the newly developed compartment model is applicable to estimate properly the radiation dose to the neighboring population due to an accidental release of 14C from nuclear facilities.  相似文献   

5.
Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.  相似文献   

6.
An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The 240Pu/239Pu and 242Pu/239Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.  相似文献   

7.
Increasingly the burial of nuclear waste in deep underground repositories is being regarded as a safe long-term solution for disposal. However, to support this safety assessment models of the associated risks are required. An important component of these models is the upward migration of radionuclides from a contaminated water table into arable and pasture crops. A five-year experiment to investigate the processes which control these transfers has been undertaken at Imperial College. Selected data from this experiment were made available to participants of the BIOMOVS II programme in order to allow them to perform blind hydrological and radionuclide transport simulations. The results show the importance of correctly characterising the soil hydrology and indicate that model conceptualisations derived from surface contamination studies may not adequately capture the various processes which influence the upward movement of radionuclides in the vadose zone. These include not only the water movement, but also chemical and biological processes. Finally, the difficulty and importance of a priori parameter selection is highlighted.  相似文献   

8.
To clarify the behavior of 14C in terrestrial ecosystems, 14C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Delta14C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14C addition and re-emission from soil. On the other hand, delta14C in soil respiration demonstrated that 14C abundance ratio itself in soil-respired CO2 is not always high compared with that in atmospheric CO2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Delta14C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14C-depleted soil organic matter to the total soil respiration in August.  相似文献   

9.
A commercial formulation of composted municipal solid wastes (MSW) was used for amending soil at 0, 50, 100, 150, 200 and 250 kg ha−1 in which wheat had been grown (field experiments) and element residues of amended soil and plant parts were enumerated. MSW amendment caused a significant improvement in soil quality. Growth (shoot length, leaf number, leaf area, tiller number, plant dry weight and chlorophyll contents of leaves) and yield (length of panicle, number of panicles per plant and grain yield per plant) of wheat increased gradually up to the MSW-amendment level of 200 kg ha−1. Elements, Ni, Zn, Cu, Cd, Cr, and Pb accumulated in plants from MSW amended soil, but the degree of metal accumulation was the least in seeds in comparison to other plant parts (root, stem and leaf). Moreover, Ni, Zn, Cd and Pb, were in high concentration in all plant parts. It is recorded that the level of 200 kg ha−1 MSW amendment caused better growth and yield of wheat, but progressive levels of metal accumulation in plant parts were recorded due to increase in amendment levels. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

10.
Parameters regarding fate of 63Ni in the soil–plant system (soil: solution distribution coefficient, Kd and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of 63Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm × 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer®) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq 63NiCl2. Maize was harvested 135 days after 63Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of 63Ni by maize was calculated for leaves and kernels. Water drainage and leaching of 63Ni were monitored over the course of the experiment. Values of Kd in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that 63Ni was strongly retained at the soil surface. Prediction of the 63Ni downward transfer could not be reliably assessed using the Kd values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of 63Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.  相似文献   

11.
The contents of 90Sr and 137Cs and the pattern of their redistribution in the soil and plant cover of floodplain ecosystems have been assessed. It is shown that the radionuclide distribution across the floodplain and along the river flow is determined by the formation of a barrier to their migration near the river channel, at which less mobile 137Cs accumulates. The soil and plant cover of the central floodplain are enriched with 90Sr. Differences in radionuclide migration in floodplain soils and their input into plants are determined by the relationship between the processes of their immobilization and migration with soil water.  相似文献   

12.
Environemtnal 14C levels around various types of nuclear installations within the UK have been monitored during recent years. Enhanced 14C levels have been detected around both the nuclear fuel reprocessing plant as Sellafield and the thermal nuclear power station complex at Hunterston. From these measurements, the radiological impact of the 14C discharges on the local population is assessed. It is conservatively estimated that the 14CO2 emissions from Sellafield between 1952 and 1985 could have delivered an 8·4 man Sv collective effective dose equivalent commitment to the population living within 40 km of the site. The maximum possible collective dose to the population within 15 km of Hunterston in 1984 was 15 × 10−3 man Sv. Conservative estimates of maximum annual effective dose equivalents to individuals around Sellafield and Hunterston are 0·2 mSv (in 1982) and 12 μSv (in 1984), respectively. These dose levels do not exceed the limits recommended by ICRP but the former value clearly indicates that, for the larger discharges at least, consideration and optimisation of 14C releases are fully justified. The same 14C measurements are also used to test the validity of two atmospheric dispersion models, the Gaussian plume and the so-called ‘hyperbolic’ models. The former is excellent in predicting downwind 14C levels around Hunterston but is unsatisfactory when applied to Sellafield, whereas the latter proves reliable at both sites. Further investigations suggest that the Gaussian plume model's poor performance at Sellafield can be explained by inaccurate input data.  相似文献   

13.
A soil-plant transfer study was performed using soil from a former uranium ore processing factory in South Bohemia. We present the results from greenhouse experiments which include estimates of the time required for phytoremediation. The accumulation of 226Ra by different plant species from a mixture of garden soil and contaminated substrate was extremely variable, ranging from 0.03 to 2.20 Bq 226Ra/g DW. We found differences in accumulation of 226Ra between plants from the same genus and between cultivars of the same plant species. The results of 226Ra accumulation showed a linear relation between concentration of 226Ra in plants and concentration of 226Ra in soil mixtures. On the basis of these results we estimated the time required for phytoremediation, but this appears to be too long for practical purposes.  相似文献   

14.
We investigated the vertical profiles of 239+240Pu, 137Cs, and excess 210Pb (210Pbex) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of 239+240Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of 239+240Pu from the catchment area in addition to direct deposition on the lake surfaces. The 137Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the 137Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The 137Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The 239+240Pu/137Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the 137Cs was lost from the sediments. The low inventory of 137Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.  相似文献   

15.
129I has been released during operations at the BNFL nuclear fuel reprocessing plant at Sellafield in west Cumbria over the past thirty years with about 95% being discharged into the sea and 5% into the atmosphere. Soil samples have been taken within a 40 km radius of Sellafield to determine the extent to which the 129I is deposited in the immediate vicinity of the plant. The 129I content has been determined by a sensitive neutron activation technique and levels in soil were found to be elevated above global levels in all samples. The areal distribution of 129I was consistent with direct deposition following release to the atmosphere from Sellafield and the relationship between 129I activity and the distance from Sellafield was of a form predicted by atmospheric dispersion models. The absence of any observable return of 129I from the sea has implications for assessments of dose.  相似文献   

16.
Carbon-14 was added to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. The nature of the spike and subsequent monitoring allowed the investigation of both short-term and longer-term processes relevant to evaluating impacts of accidental and routine releases and of solid waste disposal. Data from this experiment were used in the BIOMOVS II program as a validation test for modelling the fate of the 14C added to the lake. Four models were used: (1) a simple probabilistic mass balance model of a lake; (2) a relatively complex deterministic model; (3) a complex deterministic model; and (4) a more complex probabilistic model. Endpoints were 14C concentrations in water, sediment and lake whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the range of the observed data and when uncertainty in model predictions is taken into consideration. The simple lake model did not account for internal recycling of 14C and, in this respect, its predictions were not as realistic as those of the more complex models for concentrations in water. However, the simple model predictions for the 14C inventory remaining in lake sediment were closest to the observed values. Overall, the more complex probabilistic model was the most accurate in simulating 14C concentrations in water and in whitefish but it overestimated 14C retention in the lake sediments, as did the other complex models. Choice of parameter values for transfer rate to sediment and gaseous evasion are important in influencing model predictions. Although predicted concentrations of 14C in fish of dynamic models were more accurate than those using equilibrium bioconcentration factors typically used in assessments, large variability in observed 14C concentrations in whitefish emphasizes the need for a better understanding of the important processes that influence these contaminant concentrations.  相似文献   

17.
A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs+ was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs+ was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs+ was taken up into the mycelia competitively with K+, because K+ uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs+ in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs+ trapped by intercellular materials such as polyphosphate and Cs+ present in a cytoplasmic pool.  相似文献   

18.
Abstract

A pot experiment was conducted to investigate the influence of citric and oxalic acids effect on Pb and Zn uptake by corn and winter wheat. The experiment was employed with citric acid (CA) applied at 3 rates (0, 1.5 and 3.0 mmol kg?1 soil), oxalic acid (OA) at 3 rates (0, 1.5 and 3.0mmol kg?1 soil) and citric acid combined with oxalic acid (1.5 mmol citric acid combined with 1.5 mmol oxalic acid kg?1). Two types of soil were chose in the experiment. One was collected from the agricultural soil near a battery-recycling factory in Anhui province, China (site A) and the other was collected from a Pb-Zn mine residues in Hunan province, China (site B). The results showed that soil pH varied with the different treatment of citric and oxalic acids. However, there were no differences in all the treatments. 3.0mmol CA kg?1 soil addition significantly increased the concentrations of the CaCl2-extractable Pb and Zn and other treatments have no significantly increased. The highest shoot concentrations of Pb and Zn in both species occurred in application of 3.0 mmol CA/kg?1 soil and shoot concentrations of Pb and Zn in both species were significantly higher than the controls in this treatment. Shoot yields declined with application of citric and oxalic acids, indicating that the plants were sensitive to the toxicity of the metals or the amendments. The highest Pb uptake values by maize and wheat werell2.3 and 77.2 μg pot1 in soil of site A, and occurred with the control and 3.0 mmol CA/kg?1 soil respectively.  相似文献   

19.
The contents of 137Cs in the soil, plant, and animal samples collected in the ecosystems of protected areas from the White Sea to the Black Sea in 1999 slightly differ from those in the period between 1980 and 1984. As a result of global fallout after the Chernobyl accident, the content of radioactive cesium in the soil has increased only on the territory of the Biological Station of Moscow State University at the White Sea, whereas that in the litter and plants has increased in virtually all areas studied. The isotope content in animals is actually equal to that recorded between 1980 and 1984. The mobility of 137Cs in the soil–plant link has increased, which may be due to fallout after the accident. The duration of a complete radionuclide cycle in ecosystems decreases from 10 half-life periods in northern regions to 2.5 half-life periods in the southern regions. The Chernobyl disaster has caused no significant changes in the global radioactive background in the European part of the Russian Federation.  相似文献   

20.
Uptake of 137Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant–soil 137Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of 137Cs concentrations in plants among soils was related to differences in soil solution 137Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The 137Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997–1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in 137Cs and K concentrations in soil solution. It is concluded that differences in 137Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号