首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

2.
Vasseur DA  Gaedke U 《Ecology》2007,88(8):2058-2071
Community biomass is often less variable than the biomasses of populations within the community, yet attempts to implicate compensatory dynamics between populations as a cause of this relationship often fail. In part, this may be due to the lack of appropriate metrics for variability, but there is also great potential for large-scale processes such as seasonality or longer-term environmental change to obscure important dynamics at other temporal scales. In this study, we apply a scale-resolving method to long-term plankton data, to identify the specific temporal scales at which community-level variability is influenced by synchrony or compensatory dynamics at the population level. We show that variability at both the population and community level is influenced strongly by a few distinct temporal scales: in phytoplankton, ciliate, rotifer, and crustacean communities, synchronous dynamics are predominant at most temporal scales. However, in phytoplankton and crustacean communities, compensatory dynamics occur at a sub-annual scale (and at the annual scale in crustaceans) leading to substantial reductions in community-level variability. Aggregate measures of population and community variability do not detect compensatory dynamics in these communities; thus, resolving their scale dependence unmasks dynamics that are important for community stability in this system. The methods and results presented herein will ultimately lead to a better understanding of how stability is achieved in communities.  相似文献   

3.
Accurate species identification of decapod crustacean larvae is required to understand their population distributions, life cycle dynamics and interactions with their habitats. Analysis of plankton samples using morphological taxonomic methods and microscopy is time-consuming, requires highly skilled and trained operatives and may often be inaccurate. As complementary tools to classical identification methods, recent work has focused on the development of molecular approaches and shows their feasibility for species-specific identification. This study has developed real-time PCR assays utilising species-specific Taqman® probes designed in the cytochrome oxidase I (COI) gene of Liocarcinus depurator, Necora puber, Carcinus maenas and Cancer pagurus. Our study then employed the probe and primers designed for L. depurator to obtain accurate identification and relative abundance estimates of L. depurator larvae in plankton samples collected between March 2005 and October 2006. Ranges of larval abundances were derived from a standard curve created from plankton samples spiked with a known number of larvae reared in the laboratory. Inhibition of the PCR reaction was shown to be an important factor and our results suggested that 0.1 ng of DNA as template provided accurate identification and avoided inhibition. Real-time PCR was shown to provide accurate species identification on unsorted plankton samples and could be suitable for the estimation of larval abundances in the plankton, although more work must be done to improve the accuracy of those estimations.  相似文献   

4.
Abstract: There are differences in perception of the status of fisheries around the world that may partly stem from how data on trends in catches over time have been used. On the basis of catch trends, it has been suggested that about 70% of all stocks are overexploited due to unsustainable harvesting and 30% of all stocks have collapsed to <10% of unfished levels. Catch trends also suggest that over time an increasing number of stocks will be overexploited and collapsed. We evaluated how use of catch data affects assessment of fisheries stock status. We analyzed simulated random catch data with no trend. We examined well‐studied stocks classified as collapsed on the basis of catch data to determine whether these stocks actually were collapsed. We also used stock assessments to compare stock status derived from catch data with status derived from biomass data. Status of stocks derived from catch trends was almost identical to what one would expect if catches were randomly generated with no trend. Most classifications of collapse assigned on the basis of catch data were due to taxonomic reclassification, regulatory changes in fisheries, and market changes. In our comparison of biomass data with catch trends, catch trends overestimated the percentage of overexploited and collapsed stocks. Although our biomass data were primarily from industrial fisheries in developed countries, the status of these stocks estimated from catch data was similar to the status of stocks in the rest of the world estimated from catch data. We conclude that at present 28–33% of all stocks are overexploited and 7–13% of all stocks are collapsed. Additionally, the proportion of fished stocks that are overexploited or collapsed has been fairly stable in recent years.  相似文献   

5.
The distribution of pelagic larvae, juvenile and epitoquous stages of shallow shelf bottom invertebrates, in the plankton of the Norwegian and Barents Seas is largely determined by the distribution of the respective parental forms. The various currents influence the distribution only secondarily and to a rather limited extent. Most larvae remain in the water masses above the zones inhabited by their parents. Thus their large scale distribution in the plankton is determined primarily by the ecological and zoogeographical patierns of distribution of the parental life cycle stages. Such dependence of larval distributions on the distribution of adults in the benthos is assumed to represent a general pattern in all shallow regions of the world oceans.  相似文献   

6.
A survey was made of coastal waters around the colonies of Arctic sea birds, which showed that such zones are highly productive. The mean biomass (standing stock) of crustacean plankton for the whole water column varied from 470 to 670 mg/m3 in separate transects, its maxium value reaching 1950 mg/m3. A list of species is given. Dominance hierarchy among the species is clearly expressed. The stable discrete structure of the community is assured by the spatial disjunction of dominant-form populations and the existence of the latter as relatively isolated aggregations. The conclusions arrived at are based on the materials of net hauls and analyses of the food of planktophageous birds (Plotus alle, family Alcidae). Favourable hydrological factors in conjunction with the fertilization of water with bird guano assure the stability of this neritic community with its multiplicity of interrelationships between producers and consumers of the first and second trophic levels, existing under the rigorous conditions of an ice-covered region.  相似文献   

7.
The Crangon crangon (L.) population of the Solway Firth displays a mean incidence of shell disease of 13.2%, which is some 1.5 times more than any other crustacean species in this area. The condition is characterized by superficial pitting and cracking of the carapace leading to the formation of blackened erosions which are commoner in larger individuals and, in all, are lost at the moult. Visually identical damage appears within 4-5 days of mechanical abrasion of the exoskeleton, but is inhibited if the abraded animals are maintained in an antibiotic medium.

Disease incidence fluctuates throughout the year with minima in March and August and maxima during the winter months. Apparently the activity of the local commercial shrimp fishery is the primary cause of the high incidence of shell disease amongst these shrimp. Mechanical damage to the exoskeleton, incurred as a result of abrasion by fishing instruments, facilitates penetration of the epicuticle by chitinoclastic bacteria which then induce chitinolysis of the underlying calcified exoskeletal layers. The condition does not seem to cause a significant mortality of the shrimp population nor does it affect the value of the commercial catch.  相似文献   

8.
The demersal fish fauna of Albatross Bay, in the eastern Gulf of Carpentaria, northern Australia, was sampled on seven cruises from August 1986 to November 1988, using a random stratified trawl survey. Four depth zones between 7 and 45 m were sampled during both day and night. The mean biomass of fish from all seven cruises was 297 kg ha–1 for days trawls and 128 kg ha–1 for night trawls. The overall mean catch rates were 922 kg h–1 for day trawls and 412 kg h–1 for night trawls. There were marked differences between cruises in both the biomass and catch rate. Approx 890 000 fish of 237 species were collected. Of these, 25 species comprised 82% of the total biomass and 74% of the overall catch rate. The dominant families were Leiognathidae, Haemulidae and Clupeidae, with Sciaenidae and Dasyatidae important at night.Leiognathus bindus was the most abundant species. Twenty-five species occurred in more than 50% of trawls, withCaranx bucculentus the most frequently caught (96% of all trawls). Thirty four species were predators on prawns; their absolute mean biomass was 50 kg ha–1 during the day and 39 kg ha–1 at night. The corresponding catch rates were 171 and 125 kg h–1. Multiple-regression analyses were used to discriminate the effects of diel, seasonal, depth and cruise patterns. Of the 31 most abundant species, 15 showed diel patterns of abundance; 11 species showed seasonal patterns of abundance; 23 species had differential depth distribution; and 13 species showed significant cruise-to-cruise variation in abundance. Cruise variations in abundance were tested against salinity, temperature, tidal exchange, plankton biomass and prawn abundances as well as periods (and lags) of total rainfall prior to sampling. Only total rainfall showed any significant correlation. Total rainfall over a period of 6 wk immediately prior to sampling showed significant positive correlations with the abundances of five species, with overall daytime catch rates, and with the suite of 34 prawn predators. Rainfall and river runoff into Albatross Bay were significantly correlated. In Albatross Bay, the complex of factors affecting fish abundances and the magnitude of between-cruise differences indicate that such tropical communities may be unpredictable and are not seasonally constant. The high catch rates in Albatross Bay relative to similar tropical areas elsewhere are discussed and attributed to the light exploitation of the Albatross Bay stocks. Other than a prawn fishery, there is no commercial trawling in Albatross Bay. Hence, the only fishing mortality is a result of by-catch from prawn trawling. The annual total of such fish by-catch is probably less than 10% of the estimated standing stock of 93 000 tonnes.  相似文献   

9.
Abstract:  The emerging world crisis created by declining fish stocks poses a challenge to resource users and managers. The problem is particularly acute in poor nations, such as those in East Africa, where fishing is an important subsistence activity but high fishing intensity and use of destructive gear have resulted in declining catches. In this context developing effective management strategies requires an understanding of how fishers may respond to declines in catch. We examined the readiness of 141 Kenyan fishers to stop fishing under hypothetical scenarios of declines in catch and how socioeconomic conditions influenced their decisions. As expected, the proportion of fishers that would exit the fishery increased with magnitude of decline in catch. Fishers were more likely to say they would stop fishing if they were from households that had a higher material style of life and a greater number of occupations. Variables such as capital investment in the fishery and the proportion of catch sold had weak, nonsignificant relationships. Our finding that fishers from poorer households would be less likely to exit a severely declining fishery is consistent with the literature on poverty traps, which suggests the poor are unable to mobilize the necessary resources to overcome either shocks or chronic low-income situations and consequently may remain in poverty. This finding supports the proposition that wealth generation and employment opportunities directed at the poorest fishers may help reduce fishing effort on overexploited fisheries, but successful interventions such as these will require an understanding of the socioeconomic context in which fishers operate.  相似文献   

10.
I compared the sampling properties of two methods for collecting fish larvae over reefs: nighttime collecting with a light trap, and daytime collecting with a small plankton net that could be steered by a diver. Samples were collected in the Gulf of California during summer, 1989 and 1990. The 90 light-trap samples yielded 9406 larvae from 31 families, while the 75 plankton-net samples yielded 17852 larvae from 43 families plus unidentified anguilliforms. Four families were collected only in the light trap, and 16 families plus the anguilliforms were collected only with the plankton net. With one exception, the families that were collected by only one method were rare. Twenty-seven families were collected by both methods, but only 13 were collected at least five times by each. The average catch per sample differed significantly between methods for 9 of these 13 families. In each case, the plankton net yielded more larvae per sample. The distribution of larvae among families was less equitable in light-trap samples than in planktonnet collections, primarily because clupeids were so dominant in the former. However, the taxonomic composition of light-trap and plankton-net collections was broadly similar. Seven families were shared among the ten most abundant families for each method, and the relative abundances of taxa (47 families plus anguilliforms) were strongly correlated between methods. A comparison of larval size-distributions for 12 families indicated that the size structure of catches usually differed between collecting methods. In four families there was little overlap in the size classes collected, in five families the distributions overlapped broadly but had different shapes, and in three families the size distributions were similar. Although the light trap collected larger larvae on average, its catches were not limited to settlement-stage or transition larvae. Larvae of at least ten families were present over reefs in all size classes, but the combination of both sampling methods was usually required to detect this. Based on their abundance and wide size distribution over reefs, at least some larvae from these ten families may remain over reefs throughout development. However, additional data are required to determine the importance of water over reefs as a larval habitat.  相似文献   

11.
Forage fish—small, low trophic level, pelagic fish such as herrings, sardines, and anchovies—are important prey species in marine ecosystems and also support large commercial fisheries. In many parts of the world, forage fish fisheries are managed using precautionary principles that target catch limits below the maximum sustainable yield. However, there are increasing calls to further limit forage fish catch to safeguard their fish, seabird, and marine mammal predators. The effectiveness of these extra-precautionary regulations, which assume that increasing prey abundance increases predator productivity, are under debate. In this study, we used prey-linked population models to measure the influence of forage fish abundance on the population growth rates of 45 marine predator populations representing 32 fish, seabird, and mammal species from 5 regions around the world. We used simulated data to confirm the ability of the statistical model to accurately detect prey influences under varying levels of influence strength and process variability. Our results indicate that predator productivity was rarely influenced by the abundance of their forage fish prey. Only 6 predator populations (13% of the total) were positively influenced by increasing prey abundance and the model exhibited high power to detect prey influences when they existed. These results suggest that additional limitation of forage fish harvest to levels well below sustainable yields would rarely result in detectable increases in marine predator populations.  相似文献   

12.
The sampling performance of two high-speed samplers, (Delfino I and II), fitted with a calibrated flow meter, was studied in the open Ligurian Sea using a battery comprising 6 such Delfinos linked together. Since, in plankton counts, only those organisms should be counted which are definitely retained in the nets, several techniques for the separation of the organisms which pass through the pore of a net of a given pore size and those which are safely retained were tested. Attempts to separate these two fractions by filtration of the fixed sample through nets of different pore sizes were not successful, as living organisms were able to pass through pore sizes which retained dead organisms. However, optical sizing under the dissecting microscope during counting gave reproducible results. Using this counting technique, the influence of the pore size of plankton nets on the reproducibility of sampling of natural populations was studied. The results obtained show that live plankton passes through the net pores at a size at which fixed plankton is retained. Hence, the minimum retention size for living and dead plankton is different. By comparing samples taken with nets of different pore sizes, and counting the organisms caught according to different sizes, it was possible to determine the minimum retention size of live plankton organisms for several different net pore-sizes. The minimum retention size is, therefore, the smallest pore size at which the organisms of a certain width cannot escape through the pores of the net and are, thus, quantitatively retained in the net. By applying the criterion of minimum retention size, the influence of speed towing on the number of plankton organisms caught was studied. It was shown that the number of organisms which are safely retained, i.e., do not escape through the pores, increased with speed, reaching a plateau at 5 to 7 knots.A contribution under the Association Contract CNEN-EURATOM. Contribution No. 668 of the Euratom Biology Division.  相似文献   

13.
14.
In the demand for recreational fishing sites, an important explanatory variable differentiating sites is the unobserved expected catch rate. Since the observed catch rate is subject to sampling variability, using the average of a site's observed catch rates causes the parameter estimator on catch to be biased downward. We develop and demonstrate a solution to this errors-in-variables problem when there are repeated measurements on the catch rate. Consistent and efficient estimates of both the demand parameters and the expected catch rates are obtained by simultaneously estimating them by maximum likelihood. An empirical example demonstrates the importance of simultaneous estimation.  相似文献   

15.
P. W. Glynn 《Marine Biology》1973,20(4):297-318
Observations on certain conditions of the physical environment and plankton ecology of a Caribbean coral reef form the subjects of a two-part study. Here, physical factors are considered, with special attention directed to their influence on the Porites reef-flat biotope. Meteorologic (temperature, precipitation, wind) and hydrographic (temperature, salinity, tide, sea level, current) conditions are examined in order to determine their influence on water movement over the reef and correlation with seasonal variations in plankton abundance. Shoal-water circulation is characterized with reference to patterns of movement, origin, and volume flow. A relationship between wind velocity and direction to volume flow is examined in order to describe the interaction of these parameters. The effects of low tidal exposures and storms on the dominant coral species Porites furcata Lamarck are also examined. Observed mortalities and physical alterations due to these factors are shown to be significant, resulting in relatively rapid modifications of the reef-flat habitat. A chief overall objective of this study is to obtain a quantitative assessment of drifting net plankton crossing the reef-flat environment, and to evaluate its contribution as a food source to the shoal-reef biota. Integration of the physical observations with the plankton ecology will form the subject of a forthcoming publication.  相似文献   

16.
‘End-to-end’ models have been adopted in an attempt to capture more of the processes that influence the ecology of marine ecosystems and to make system wide predictions of the effects of fishing and climate change. Here, we develop an end-to-end model by coupling existing models that describe the dynamics of low (ROMS–N2P2Z2D2) and high trophic levels (OSMOSE). ROMS–N2P2Z2D2 is a biogeochemical model representing phytoplankton and zooplankton seasonal dynamics forced by hydrodynamics in the Benguela upwelling ecosystem. OSMOSE is an individual-based model representing the dynamics of several species of fish, linked through opportunistic and size-based trophic interactions. The models are coupled through a two-way size-based predation process. Plankton provides prey for fish, and the effects of predation by fish on the plankton are described by a plankton mortality term that is variable in space and time. Using the end-to-end model, we compare the effects of two-way coupling versus one-way forcing of the fish model with the plankton biomass field. The fish-induced mortality on plankton is temporally variable, in part explained by seasonal changes in fish biomass. Inclusion of two-way feedback affects the seasonal dynamics of plankton groups and usually reduces the amplitude of variation in abundance (top-down effect). Forcing and coupling lead to different predicted food web structures owing to changes in the dominant food chain which is supported by plankton (bottom-up effect). Our comparisons of one-way forcing and two-way coupling show how feedbacks may affect abundance, food web structure and food web function and emphasise the need to critically examine the consequences of different model architectures when seeking to predict the effects of fishing and climate change.  相似文献   

17.
The distribution and abundance of the late-stage phyllosoma larvae of Panulirus longipes cygnus George and the distribution and densities of the final larval stage, the puerulus, both in the plankton and at settlement along the coast, were investigated. A total of 3,617 late-stage phyllosoma (Stages VI to IX) and 301 puerulus larvae were caught at 187 plankton stations during the July to November periods 1974, 1975 and 1976 off the west coast of Australia between 29°00 to 32°30S and 113°30 to 115°00E. The depth range sampled was 0 to 35 m on the continental shelf and 0 to 90 m off the shelf. During onshore/offshore cruises with similar sampling effort on and off the shelf, 1,169 late-stage phyllosoma larvae were taken, of which only 9 were caught on the shelf, and these near the outer edge. A series of cruises sampling two areas beyond the shelf near 29°30 and 32°00S yielded 2448 late-stage phyllosoma, with greater densities of larvae in the northern location. The settlement of puerulus-stage larvae along the coast in the same geographical range was also greater in the north than in the south. The data from the onshore/offshore cruises showed a definite effect of moon phase on numbers of puerulus larvae caught on the shelf, with higher catches near new moon. The low numbers of puerulus larvae (usually 0, 1 or 2 individuals) caught at all stations showed that the puerulus stage is sparsely distributed in the plankton. Fewer puerulus larvae were present at the surface than at lower depths, but it was not possible to determine a depth preference for the puerulus between 10 m and the lowest depths sampled because of the low catch numbers. No relationships were found between puerulus larvae density and surface-water temperature, salinity, or plankton biomass at each station. Data on the larval distributions indicate that, near the end of their planktonic existence, the majority of the late-stage phyllosoma larvae of P. longipes cygnus are not carried onto the shelf, where mixing of oceanic and continental shelf waters occurs only on the outer third, but are transported southward by oceanic circulation beyond the shelf. The puerulus moults from the last phyllosoma stage beyond the shelf and completes the larval cycle by swimming across the shelf and settling in the shallow reef areas.  相似文献   

18.
• Hg bioaccumulation by phytoplankton varies among aquatic ecosystems. • Active Hg uptake may exist for the phytoplankton in aquatic ecosystems. • Impacts of nutrient imbalance on food chain Hg transfer should be addressed. The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer from water to aquatic food chain. However, the current understanding of major factors affecting Hg accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide, including inland water, nearshore water and open sea, was established. Key factors influencing plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell size for both phyto- and zooplankton. A contrasting trend was observed between the plankton biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid shifts in nutrient compositions. We suggested that these potential influences on the growth and composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk assessments.  相似文献   

19.
《Ecological modelling》2005,181(4):535-556
Observational models for the catch of fish at age a (or size) at time t are fundamental equations in fisheries science, linking a population model with data. The well known Baranov catch equation (which assumes that fishing and natural mortalities are constant over both age and time) is a nominal basis of those most commonly used in fish stock assessment and fish population models (which assume that fishing and natural mortalities vary with both age and time). But, what should a catch equation look like, if the instantaneous rates of fishing and natural mortalities of fish of age a at time t vary with age a and time t? Without answering this question, use of those catch equations in fish stock assessment and population models renders their results uncertain. In this paper, I derive a general catch in number or in biomass equation as observational models of an age- and time-dependent model for a fish population by Taylor series expansion of, and by directly manipulating, a general catch integral, reduce it to commonly used catch equations, and compare the performance of 11 of them using data on the western king prawn Penaeus latisulcatus. I show that the nominal generalization of the Baranov catch equation misses several terms. In so doing, I derive the catch equations more accurately and restore these missing terms. Although almost all approximations overestimate the catch per recruit for older prawns, all commonly used catch equations and their extensions perform worse than theoretically sound representations of the general catch equation and their approximations. The age-specific bias of all models is <2.5, <18 and <90% for a time interval of sampling of 1, 7 and 30 days, respectively. Such large biases even for moderate values of the length of the time interval of sampling highlight a need for assessing the utility of commonly used catch equations for individual species.  相似文献   

20.
Natural food,foregut clearance-rate and activity of the crab Scylla serrata   总被引:5,自引:0,他引:5  
B. J. Hill 《Marine Biology》1976,34(2):109-116
The natural diet, rate of foregut clearance and diurnal activity of the crab Scylla serrata were determined. The gut volume is related to size of crab as gut volume (ml)=0.07e0.033x , where x=carapace width in millimetres. Fifty per cent of crabs collected in Australia and South Africa contained molluscan remains and about 21% contained crustacean remains — chiefly grapsid crabs. Fish remains were rarely found, and it was concluded that S. serrata does not normally catch mobile forms such as fish and penaeid prawns. Gut clearance of organic tissue was rapid and almost complete after 12 h. Fish bone was retained for a mean time of 2 to 3 days, and shell for 5 to 6 days. Time-lapse photography, using infra-red light, was used to record activity. Visible light flashes reduced activity. S. serrata remained buried during the day, emerging at sunset to spend the night feeding, which occurred intermittently even when unlimited food was available. If no food was present the amount of time spent on the substrate surface was halved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号