首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports data from a field study investigating the impacts of elevated ammonia (NH3) deposition on Calluna vulgaris growing on an ombrotrophic peat bog in S.E. Scotland. Shoot extension, foliar N concentrations, chlorophyll concentration and chlorophyll fluorescence were measured during the second growing season of exposure to a gradient of ammonia concentrations. Results indicate that NH3 increases growth between 150–200 kg N ha?1y?1 cumulative deposition. Foliar N content increased significantly in response to NH3 cumulative deposition up to 400 kg N ha?1 y?1 whereas chlorophyll a content significantly decreased. Measurements of Fv/Fm suggest that although NH3 exposure altered the growth and reduced chlorophyll a, the efficiency of photosystem II was insensitive to NH3–N deposition at this stage.  相似文献   

2.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.  相似文献   

3.
A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring.  相似文献   

4.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year?1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (F Nr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h?1 (F Nr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h?1 (F Nr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

5.
Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23 days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps.Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil.  相似文献   

6.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

7.
In order to study the suitability of composting olive mill wastewater (OMW-L) by repeated applications, OMW-L was added to one mixture of lawn trimmings and olive husks as bulking agents. The composting process of this mixture was compared with another pile having 35% of olive mill wastewater sludge (OMW-S) obtained from evaporation ponds and a third, as a control, without olive mill wastewater. The repeated applications of OMW-L resulted in a sharp decrease in respiration measurements after the first 20 days of composting and showed a re-increase after 40 days following the substituting of OMW-L by water. The OMW-L addition increased the rate of water-soluble phenols in the compost and caused the appearance of a phenol fraction of high molecular-mass (510 kDa) at the end of composting. OMW-L addition also caused a clear decrease in both thermophilic bacteria and thermophilic eumycete counts. A longer persistence of phytotoxicity was observed in comparison with the other piles. However, the OMW-S produced a compost with a high degree of maturity.  相似文献   

8.
The successive stages in the composting process of forestry waste from evergreen oak (Quercus ilx sbsp. ballota) were studied under controlled conditions (initial) carbon to nitrogen ratio = 30, T = 27°C). The original material was composted for 6 months and sampled every 15 days. The variables measured on the oak biomass in the course of the experiment showed different kinetics: the weight loss and germination index underwent a monotonic increase whereas the reducing sugars, phenols and E465/E665 extinction ratio of the water-soluble fraction stabilized at their lowest values after the first 2 weeks. Other variables, such as alkali solubility, water repellency, pH and particle size, showed maximum or minimum values at intermediate stages of the experiment. In contrast to the adverse agrobiological effects of the direct application to soil of the original waste, germination biotests and greenhouse experiments showed that plant response improved from the 2 first weeks of composting. The kinetics observed for the parameters studied suggested that the less favourable effect on plant yield may come from phytotoxic substances in compost but also from the microbial use of soil N required for the transformation of the most biodegradable compost fractions in special hemicelluloses.  相似文献   

9.
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.  相似文献   

10.
This paper reports data from a field study investigating the impacts of elevated ammonia (NH3) deposition on Calluna vulgaris growing on an ombrotrophic peat bog in S.E. Scotland. Shoot extension, foliar N concentrations, chlorophyll concentration and chlorophyll fluorescence were measured during the second growing season of exposure to a gradient of ammonia concentrations. Results indicate that NH3 increases growth between 150–200 kg N ha–1y–1 cumulative deposition. Foliar N content increased significantly in response to NH3 cumulative deposition up to 400 kg N ha–1 y–1 whereas chlorophyll a content significantly decreased. Measurements of Fv/Fm suggest that although NH3 exposure altered the growth and reduced chlorophyll a, the efficiency of photosystem II was insensitive to NH3-N deposition at this stage.  相似文献   

11.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

12.
The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH4, NO3 and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon’s diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community.  相似文献   

13.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year–1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (FNr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h–1 (FNr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h–1 (FNr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

14.
Continuous micrometorological measurements of ammonia (NH3)exchange were made for a period of 19 months (May 1998–November 1999) over intensively managed grassland in southern Scotland. This study focused on the influence of management activities, such as cutting and fertilising, on vegetation-atmosphere exchange of NH3. Measurements were conducted within the European project GRAMINAE (GRassland AMmonia INteractions Across Europe) within which the Scottish site forms one of 6 sites in an E–W transect across Europe. NH3 emissions were enhanced (up to 300 ng m-2 s-1) after cutting followed by larger emissions after fertilising (up to 1400 ng m-2 s-1). Annual budget calculations show the intensive grassland acted as a net source (1.8 kg N ha-1 yr1) although fluxes were bi-directional with deposition dominating in the winter and emission in the summer. Initial modelling of the NH3 exchange using a `canopy compensation point' model has been conducted for key periods. The dynamics of the fluxes during these key periods, such as before and after cutting and fertilising, may be reproduced by introducing different values of the apoplastic ratio, = [NH4 +]/[H+].  相似文献   

15.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

16.
A pilot biotrickling filter (BTF) packed with ZX02 fibrous balls as packing material was tested for the treatment of ammonia (NH3) released from a composting plant of dairy manure. In order to investigate the effects of three compost aeration modes (mode Co-I, Co-II and In-II) on the NH3 removal efficiency, a field experiment was continuously carried out for more than eight months. The results demonstrated that under the intermittent aeration mode (In-II), the NH3 removal efficiency reached 99.2 ± 0.1% when the inlet NH3 concentration was 7.5-32.3 mg m−3 (9.8-42.5 ppmv). The maximum and critical elimination capacity of the biotrickling filter was 22.6 and 4.9 g NH3 m−3 h−1, respectively. The effluent concentration of NH3 was lower than 1.0 mg m−3, which meets the first class discharge standards of GB14554-93. When the concentration of free ammonia in the trickling liquid was varied from 0.1 to 0.4 mg L−1, the nitrification yield was between 47.9% and 103.8%. In addition, the optimum liquid tricking velocity (LTV) of the biotrickling filter was 0.5 m3 m−2 h−1 for low inlet concentrations and 2.2 m3 m−2 h−1 for high inlet concentrations. Therefore, the use of the biotrickling filter for the compost under the third aeration mode (In-II) yielded an effective optimum NH3 removal and reduced the nitrogen loss in the compost.  相似文献   

17.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

18.
Windrow composting of source-separated biowaste was studied in a pilot plant in Crete, with regard to abiotic factors, gas concentration in the pile and succession of functional microbial groups. The pH, C/N ratio and VS content, as well as the O2 and CO2 concentration, correlated well with composting time, indicating typical composting behaviour. Most of the microbial groups examined exhibited their highest counts towards the end of the thermophilic phase, with declining trends thereafter. The population of total mesophilic and thermophilic bacteria increased during the mild thermophilic phase and followed the temperature decline thereafter. Results on these microbial groups and fungi indicate that the timing of the thermophilic stage in the composting process, in addition to the peak temperature and duration of the stage, affects the microbial succession. Escherichia coli were detected for over 2 months of processing, in spite of the high temperatures achieved; only after about 3 months of composting did its population decline below the detection limit.  相似文献   

19.
Landfill leachate contains a high concentration of ammoniacal substances which can be a potential supply of N for plants. A bioassay was conducted using seeds of Brassica chinensis and Lolium perenne to evaluate the phytotoxicity of the leachate sample. A soil column experiment was then carried out in a greenhouse to study the effect of leachate on plant growth. Two grasses (Paspalum notatum and Vetiver zizanioides) and two trees (Hibiscus tiliaceus and Litsea glutinosa) were irrigated with leachate at the EC50 levels for 12 weeks. Their growth performance and the distribution of N were examined and compared with columns applied with chemical fertilizer. With the exception of P. notatum, plants receiving leachate and fertilizer grew better than those receiving water alone. The growth of L. glutinosa and V. zizanioides with leachate irrigation did not differ significantly from plants treated with fertilizer. Leachate irrigation significantly increased the levels of NHx-N in soil. Although NOx-N was below 1 mg N L−1 in the leachate sample, the soil NOx-N content increased by 9-fold after leachate irrigation, possibly as a result of nitrification. Leachate irrigation at EC50 provided an N input of 1920 kg N ha−1 over the experimental period, during which up to 1050 kg N ha−1 was retained in the soil and biomass, depending on the type of vegetation. The amount of nutrient added seems to exceed beyond the assimilative capability. Practitioners should be aware of the possible consequence of N saturation when deciding the application rate if leachate irrigation is aimed for water reuse.  相似文献   

20.
In this research the feasibility of aerated in-vessel composting process followed by chemical oxidation with H2O2 and Fenton for removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated. The ratios of the sludge to immature compost were 1:0 (as abiotic control), 1:2, 1:4, 1:6, 1:8 and 1:10 (as dry basis) at a C:N:P ratio of 100:5:1 and 55 % moisture content for a period of 10 weeks. Six concentrations of H2O2 and Fenton were added to the compost mixture for a period of 24- and 48-h reaction times. Results showed that petroleum hydrocarbons removal in ratios of 1:2, 1:4, 1:6, 1:8 and 1:10 were 66.6, 73.2, 74.8, 80.2 and 79.9 %, respectively. The results of the abiotic experiments indicated that the main mechanism of hydrocarbon removal in the composting reactors was biological. The application of combined composting and chemical oxidation demonstrated a remarkable (about 88 %) overall removal. The study showed that in-vessel composting combined with chemical oxidation is a viable choice for the remediation of the sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号