共查询到20条相似文献,搜索用时 15 毫秒
2.
The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system. 相似文献
3.
Chemical Looping Combustion (CLC) has been found to be a better alternative in converting Municipal Solid Waste (MSW) to energy and has the potential to reduce the generation of dioxins due to the inhibition of the de-novo synthesis of dioxins. This study comprehensively reviews the experimental studies of CLC of MSW, the oxygen carriers, reactor types, performance evaluation, and ash interaction studies. Modeling and simulation studies of CLC of MSW were also critically presented. Plastic waste is MSW’s most studied non-biomass component in MSW under CLC conditions. This is because CLC has been shown to reduce the emission of dioxins and furans, which are normally emitted during the conventional combustion of plastics. From the several oxygen carriers tested with MSW’s CLC, alkaline earth metals (AEM) modified iron ore was the most effective for reducing dioxin emissions, improving combustion efficiency and carbon conversion. Also, oxygen carriers with supports were more reactive than single carriers and CaSO4/Fe2O3 and CaSO4 in silica sol had the highest oxygen transport ability. Though XRD analysis and thermodynamic calculations of the reacted oxygen carriers yielded diverse results due to software computation constraints, modified iron ore produced less HCl and heavy metal chlorides compared to iron ore and ilmenite. However, alkali silicates, a significant cause of fouling, were observed instead. The best reactor configuration for the CLC of MSW is the fluidized bed reactor, because it is easy to obtain high and homogeneous solid–gas mass transfer. Future research should focus on the development of improved oxygen carriers that can sustain reactivity after several cycles, as well as the system’s techno-economic feasibility. 相似文献
4.
To achieve both high-efficiency power generation and high detoxification performance, advanced-type waste power generation plants such as pyrolysis and gas reforming plants are suggested. Further surveys on actual operational data of these plants are required in terms of reliability of the system when it is introduced to waste disposal sites. To verify the technical effectiveness of advanced-type waste power generation using the pyrolysis and gas reforming method, we evaluated 10?tons/day of municipal solid wastes (MSW) treated in a demonstration plant. A demonstration test was conducted over 100?days including 35?consecutive days of operation treating MSWs. The test results show high recycling performance and harmless nature of the plant which proves it to be an excellent waste recycling system. Major test results are as follows: (1) stabilization of waste treatment is possible with the wastes of various qualities, (2) clean gas is produced from the waste whose energy recovery ratio is approximately 40?%. (3) 99.3?% weight % of dried waste are recovered as valuable materials such as clean gas, char and metal, (4) total amount of dioxin emission to the outside of the plant is very small, down to 0.0051–0.018?μg?TEQ per ton waste. 相似文献
5.
This study aimed to identify distribution of metals and the influential factors on metal concentrations in incineration residues. Bottom ash and fly ash were sampled from 19 stoker and seven fluidized bed incinerators, which were selected to have a variety of furnace capacity, furnace temperature, and input waste. In the results, shredded bulky waste in input waste increased the concentration of some metals, such as Cd and Pb, and the effect was confirmed by analysis of shredded bulky waste. During MSW incineration, lithophilic metals such as Fe, Cu, Cr, and Al remained mainly in the bottom ash while Cd volatilized from the furnace and condensed to the fly ash. About two thirds of Pb and Zn was found in the bottom ash despite their high volatility. Finally, based on the results obtained in this study, the amount of metal in incineration residues of MSW was calculated and the loss of metal was estimated in terms of mass and money. A considerable amount of metal was found to be lost as waste material by landfilling of incineration residues. 相似文献
6.
Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration ( p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg ?1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%. 相似文献
7.
In this study, metal behavior in ash-melting and municipal solid waste (MSW) gasification-melting facilities were investigated. Eight ash-melting and three MSW gasification-melting facilities with a variety of melting processes and feedstocks were selected. From each facility, melting furnace fly ash (MFA) and molten slag were sampled, and feedstock of the ash-melting processes was also taken. For the ash melting process, the generation rate of MFA was well correlated with the ratio of incineration fly ash (IFA) in feedstock, and this was because MFA was formed mostly by mass transfer from IFA and a limited amount from bottom ash (BA). Distribution ratios of metal elements to MFA were generally determined by volatility of the metal element, but chlorine content in feedstock had a significant effect on Cu and a marginal effect on Pb. Distribution ratio of Zn to MFA was influenced by the oxidizing atmosphere in the furnace. High MFA generation and distribution ratio of non-volatile metals to MFA in gasification-melting facilities was probably caused by carry-over of fine particles to the air pollution control system due to large gas volume. Finally, dilution effect was shown to have a significant effect on metal concentration in MFA. 相似文献
8.
A short-term study to characterize the solid waste stream in the Municipality of Veles, Macedonia, was performed during a 1 week period in the summer of 2002. In this study, several important parameters of the municipal solid waste stream were assessed. It was estimated that the average daily generation rate is 1.06+/-0.56 kg/cap/day, while the specific weights of the uncompacted and compacted solid waste are approximately 140.5 kg/m3 and 223 kg/m3, respectively. Furthermore, it was estimated that the daily generated volume of uncompacted waste is 7.5+/-4 L/cap/day. Although the short-term study is characterized by numerous limitations, in the absence of other existing data, such a study with direct measurements could significantly contribute to the development of an efficient solid waste management system in countries with economies in transition like Macedonia. 相似文献
9.
Journal of Material Cycles and Waste Management - Generation of municipal solid waste (MSW) depends upon lifestyle, urbanization and income level of population. Solid waste management is one of the... 相似文献
10.
A new model entitled the coupled mechanical-hydraulic-gaseous effect and biochemical degradation for municipal solid waste (MSW) is proposed to simulate and predict the MSW settlement in this study. The coupled model can be used to simulate and predict the distributions of gas and water pressure as well as total waste settlement. Model verification indicates that because of degradation, the excess pore gas pressure increases rapidly and reaches a peak value in a short time, and then it dissipates gradually. But the excess pore water pressure may not always increase at the beginning, which depends on hydraulic conductivity of MSW. Dissipation of the excess pore water pressure is slower than that of the excess pore gas pressure. A waste settlement experiment was conducted in the laboratory using a synthetic MSW. The data was used to verify the developed model, which gave satisfactory results. Based on the experimental results, a new formula is proposed to simulate biochemical degradation. 相似文献
11.
Polycyclic aromatic hydrocarbons (PAH) emissions from a commercial municipal solid waste incinerator (MSWI) were studied. A MSW–coal mixture and coal only were used as fuel for the fluidized bed incinerator. Seven sampling points were chosen according to the classified four PAH emission pathways: flue gas, residue, ash and water. The mixture of MSW and coal resulted in PAH emission more than that of coal only, and PAH emission increased with increasing MSW mass percentage. Calcium oxide (CaO) or calcium carbonate (CaCO 3) was added as a desulfurizer. PAH emission also changed with different desulfurizers because of their different influences on heat balance. The PAH toxic equivalent (TEQ) of all operating conditions was also examined, showing that total daily PAH emission from MSWI can be determined. 相似文献
12.
分析了淄博市城市生活垃圾处理的现状,指出了所存在的问题,结合淄博市城市生活垃圾的特点,提出了新的城市垃圾处理对策. 相似文献
13.
The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana. 相似文献
15.
The management of municipal solid waste (MSW) and valorisation is based on the understanding of MSW composition by its categories and physicochemical characteristics. In this study, we characterize and determine physicochemical parameters (density, fire loss, electric conductivity, average pH, moisture level, lower calorific value (LCV), total and organic carbon, and nitrogen) in order to establish MSW valorisation models for Mostaganem city (located in Western Algeria). The results show that organic matter represents 64.6% of waste, followed by paper-cardboard 15.9%, plastic 10.5%, glass 2.8%, textile 2.3%, metals 1.9%, and diverse materials 2%. These statistics are similar to results from developing countries, especially if organic matter, paper and plastic are taken into account, but differ from developed countries. This reflects the difference in lifestyle and consumption behaviour between the two communities. The parameters used to determine the possible valorisation model had the following average values: fire loss (63%); ash (37%); pH (6.1); electric conductivity (2.39 ms cm(-1)); total carbon (29.5%); nitrogen (1.5%); LCV (1028.6 kcal/kg), density (0.36), C/N (19.7) and moisture level (58.9%). The study shows that 31.1% of paper-cardboard, plastic, glass and metal wastes are recyclable. Incinerating MSW, with energy recovery, was a poor option because of the weak LCV (1028.6 kcal/kg). However, MSW produced a good methane yield of up to 1852.4 equivalent tons of oil per year. The agricultural benefits, C/N ratio values, levels of moisture and pH and the Tanner diagram all supported compost production. 相似文献
16.
A mechanical-biological process for municipal solid waste (MSW) treatment was monitored for one year. Mechanical pre-treatment provided two fractions. The oversize fraction (diameter > 50 mm) (yield of 600 g kg(-1) ww) (46 Mg day(-1)) was used for refuse derived fuel production, after undergoing a mechanical refining processes, because of low moisture content (200-250 g kg(-1)) and high calorific value (2500-2800 kcal kg ww(-1)). The undersize fraction (diameter < 50 mm) (yield 400 g kg(-1) ww) (30 Mg day(-1)) contained about 800 g kg(-1) of the MSW organic matter. This fraction was biologically treated using an aerobic process with an organic waste fraction from separate collection (77 Mg day(-1)) and recycled stabilized material (62 Mg day(-1)) obtained from end-product sieve (diameter < 20 mm) used as bulking agent. A retention time of three weeks was sufficient to obtain stabilized products in agreement with up-dated rules of the Lombardy Region (North Italy) regarding biostabilization and composting processes. Dynamic Respiration Index (DRI), such as required by both Lombardy Region rules and suggested by the European Community, was chosen in preference to other indices in order to assess the degree of biological stability of the end products. A mean DRI value of 1164 mg O2 kg SV(-1) h(-1) was obtained and is in agreement with the proposed limit of 1000+/-200 mg O2 kg SV(-1) h(-1). Self-heating test, potential biogas production and fermentable volatile solids were also used as parameters to describe the potential impact of treated waste, providing further useful information. Nevertheless, all of these methods revealed analytical or interpretative limits. A complete mass balance of the biological treatment section showed that, from a net input of 107 Mg day(-1), only 250 g kg(-1) (27 Mg day(-1)) of the waste needed to be landfilled, with 750 g kg(-1) (80 Mg day(-1)) being lost as CO2 and H2O. 相似文献
17.
The objective of this study was to determine whether the fear of dioxin/furan emissions from waste-to-energy plants was justified by the 2007 status of emissions of French municipal solid waste incinerators (MSWIs). All emissions were examined, plant by plant, but this paper focuses on the incinerator emission that is most frequently mentioned in the French media, toxic dioxins and furans. The study showed that there are 85 large MSWI that generate electricity or heat, i.e., waste-to-energy (WTE) plants, and 39 smaller MSW incinerators. The results showed that all French MSWI are operated well below the EU and French standard of 0.1 ng TEQ Nm ?3 (toxic equivalent nanograms per standard cubic meter) and that their total dioxin/furan emissions decreased from 435 g TEQ in 1997 to only 1.2 g in 2008. All other industrial emissions of dioxins have also decreased and the major source is residential combustion of wood (320 g TEQ). It was extremely difficult to obtain MSWI emission data. This unwarranted lack of transparency has resulted in the public perception that MSWI plants are major contributors to dioxin emissions while in fact they have ceased to be so. 相似文献
18.
Journal of Material Cycles and Waste Management - Indonesia has a regulation UU No. 18/2008 which changes the paradigm from waste dumping to recycling. The purpose of this study is to understand... 相似文献
19.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H 2S; the average concentration of H 2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H 2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H 2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H 2S (in order of ppbv). Regarding NH 3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H 2S/NH 3, limonene/ p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources. 相似文献
20.
Dry scrubber residue from municipal solid waste incineration (MSWI) was characterized to identify critical inorganic pollutants
and to suggest a conceptual treatment method. The key methods used were thermal analysis, including thermogravimetry (TG)
and differential thermal analysis (DTA), pH stat titration, qualitative X-ray diffraction (XRD), scanning electron microscopy (SEM), chemical equilibrium calculations, and
statistics such as error propagation, principal component analysis (PCA), and empirical modeling based on factorial designs.
Based on EU directives, the major inorganic pollutants Cd, Cr, Pb, and Zn were found. In addition, the pH was too high. With
dry scrubber residue stabilization in mind, the impact of carbonation and hydration was assessed and judged to be encouraging.
In particular, chemical equilibrium calculations showed that carbonation has considerable potential to lower the pH and the
availability of Pb, Zn, and Cr. The impact of carbonation on the mobility of Cd was found to be small. During carbonation,
a metal-trapping calcium aluminosilicate hydrate (C–A–S–H) phase is also formed. Both processes together have the potential
to lead to a robust, reliable, and reasonable stabilization method for dry scrubber residue. However, to control these processes,
the decisive factors need to be identified and their effects need to be quantified. Ca, Cl, Na, and K might be abundant components
which would be mobile even after stabilization.
Received: September 11, 2001 / Accepted: December 6, 2001 相似文献
|