首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reports on some experimental results obtained from the production of ceramics containing steel slag and glass cullet from exhaust energy saving lamps mixed in different proportions. Blending of components was done by attrition milling. Pressed powders were fast fired (50 min, cold to cold) in air up to several temperatures in the range 1000–1140 °C. The sintering behaviour was studied by shrinkage and water absorption measurements. Density, strength and hardness of the fired bodies were determined and XRD were examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their possible environmental compatibility. It is observed that the composition containing 60 wt.% of steel slag and 40 wt.% of glass cullet displayed the best overall behaviour.  相似文献   

2.
The presence of glass-like contaminants inside waste glass products, usually resulting from both industrial and differentiated urban waste collection, has greatly increased in recent years, due to the introduction to the market of a large amount of goods manufactured from ceramic glass. The presence of contaminants in the glass recycling streams reduces product quality and increases production costs. The detection of ceramic glass detection is an unresolved problem, as such material looks like normal glass and can only be detected by trained personnel. In this study an innovative approach to ceramic glass recognition, based on the spectral signature in the mid-infrared (MIR) field, was proposed and investigated. The study specifically addressed the spectral characterization of glass and ceramic glass fragments collected in a real recycling plant from two different production lines: coloured container glass and white container glass. To define suitable inspection strategies to separate the useful (glass) from the polluting (ceramic glass) materials at the recycling plants, fragments presenting different colour, thickness, size, shape and manufacturing were selected. Both dirty and clean cullet was considered. The analyses, carried out in the MIR spectral field (2280-4480 nm), show that ceramic glass and glass fragments can be recognized according to their different spectral signature. In particular, by selecting a specific wavelength ratio the two classes of materials can be rapidly recognized, suggesting the possibility of developing an integrated hardware and software sorting system for 'on-line' ceramic glass separation.  相似文献   

3.
The paper describes results obtained in the development of a previous research. We study here, in fast firing, the sintering behaviour and measure some properties of tiles containing a mixture of 60 wt% of paper mill sludge and 40 wt% of glass cullet. The behaviour of this material is compared to those displayed by materials obtained by the same mixture added with 10, 20 and 30 wt% of a natural red clay. In parallel, the same properties are measured also on a reference blend, which is presently used to produce commercial tiles. We show that powders containing 60 wt% of paper sludge and 40 wt% of glass cullet to which 30 wt% of clay is added give rise to materials that display a stable sintering process and have good hardness and strength and therefore could be used for the industrial production of tiles.  相似文献   

4.
The aim of this study was to investigate the sinterability to improve the technical properties of ceramic bodies made from coal bottom ash and soda-lime glass cullet. Different mixtures of bottom ash and glass cullet were formulated. The amount of bottom ash was 100, 70, 50 and 30 wt.%. The particle size distribution was the same for all formulations. The mixture containing 50 wt.% bottom ash also had its particle size distribution changed. Samples were formed by dry pressing and then fired at 950, 1050 and 1150 degrees C. Samples were evaluated for linear shrinkage, water absorption, flexural mechanical resistance, scanning electronic microscopy, pyroplastic deformation and thermodilatometric analysis. The higher firing temperature led to a decrease in water absorption and increased linear shrinkage, mechanical resistance and pyroplastic deformation. This effect was also observed for addition of glass up to 50 wt.%. The effect of smaller particles of bottom ash was more significant for linear shrinkage and mechanical resistance of ceramic bodies fired at 1150 degrees C. The use of a finer powder contributed to increase these properties. The influence of finer particles on water absorption and mechanical resistance of ceramic bodies fired at 950 and 1050 degrees C was not significant.  相似文献   

5.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   

6.
7.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

8.
Since hydrogen is a renewable energy source, biohydrogen has been researched in recent years. However, data on hydrogen fermentation by a leachate from a waste landfill as inoculum are scarce. We investigated hydrogen production using a leachate from an industrial waste landfill in Kanagawa Prefecture. The results showed no methane gas production, and the leachate was a suitable inoculum for hydrogen fermentation. The maximum H2 yield was 2.67 mol of H2 per mol of carbohydrate added, obtained at 30°C and an initial pH of 7. The acetate and butyrate production was significant when the H2 yield was higher. Oxidation–reduction potential analysis of the culture suggested that hydrogen-producing bacteria in the leachate were facultative anaerobic. Scanning electron microscope observations revealed that the hydrogen-producing bacteria comprised bacilli about 2 μm in length.  相似文献   

9.
A test road constructed with municipal solid waste incineration (MSWI) bottom ash was monitored over a period of 36 months. Using chemical and toxicological characterisation, the environmental impact of leachates from bottom ash was evaluated and compared with leachates from gravel used as reference. Initial leaching of Cl, Cu, K, Na, NH4-N and TOC from bottom ash was of major concern. However, the quality of the bottom ash leachate approached that of the gravel leachate with time. Leachates from the two materials were compared regarding the concentration of pollutants using multivariate data analyses (MVDA). A standardized luminescent bacteria assay using Vibrio fischeri did not show any toxicity, most likely because saline contamination can mask the toxic response and stimulate luminescence in these marine bacteria. A mung bean assay using Phaseolus aureus revealed that the toxicity of bottom ash leachate collected at the very beginning of the experimental period (October 2001 and May 2002) might be attributed to the following components and their respective concentrations in mg l(-1): Al (34.2-39.2), Cl (2914-16,446), Cu (0.48-1.92), K (197-847), Na (766-4180), NH4-N (1.80-8.47), total-N (12.0-18.5), and TOC (34.0-99.0). The P. aureus assay was judged as a promising environmental tool in assessing the toxicity of bottom ash leachate.  相似文献   

10.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. Combustion technologies have been the principal technology used to destroy POPs. However, combustion technologies can create polychlorinated dibenzo‐p‐dioxins and polychlorinated dibenzo‐p‐furans, which are human carcinogens. Two organizations, the United Nations Environment Programme (UNEP) and the International HCH and Pesticides Association (IHPA) have developed detailed reports and fact sheets about noncombustion technologies for POP treatment. This article is intended to update and summarize these reports in a concise reader's guide, with links to sources of further information. The updated information was obtained by reviewing various Web sites and documents, and by contacting technology vendors and experts in the field. © 2006 Wiley Periodicals, Inc.  相似文献   

11.
Limestone has been proven effective in removing metals from water and wastewater. A literature review indicated that limestone is capable of removing heavy metals such as Cu, Zn, Cd, Pb, Ni, Cr, Fe and Mn are through a batch process or by filtration technique. The removal capability is reported at up to 90%. However, to date most of the studies have been focused on synthetic wastewater. The present study attempts to investigate the suitability of limestone to attenuate total iron (Fe) from semi aerobic leachate at Pulau Burung Landfill Site in Penang, Malaysia. Iron was found in significant quantities at the landfill site. The study also aims to establish the Fe isotherm and breakthrough time of the proposed limestone filter for post-treatment to the migrating landfill leachate before its release to the environment. The Fe isotherms were established using a batch equilibrium test, while the breakthrough characteristics were determined using continuous flow permeating through a limestone column. The latter was used in order to simulate the continuous flow of leachate that would occur in the proposed limestone filter. The limestone media used in the experiment contain more than 90% CaCO3 with particle sizes ranging from 2 to 4 mm. Four filter columns (each 150 mm in diameter and 1000 mm depth) were installed at the landfill site. Metal loadings were kept below 0.5 kg /m3 day and the experiment was run continuously for 30 days. Initial results indicated that 90% of Fe can be removed from the leachate based on retention time of 57.8 min and surface loading of 12.2 m3/m2 day. For the batch study on the Fe isotherm, the results indicated that limestone is potentially useful as an alternative leachate treatment system at a relatively low cost.  相似文献   

12.
This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.  相似文献   

13.
Fiber-reinforced plastic sheets containing unsaturated polyester cross-linked with styrene, CaCO3 and glass fibers as fillers were pyrolyzed in a helium and steam atmosphere in order to recover glass fibers and valuable organic pyrolysis products. Glass fibers were separated from CaCO3 and CaO by dissolving calcium salts in hydrochloric acid. Residual organic material was burnt afterwards. Best results were obtained at a pyrolysis temperature of 600 and 700 °C, resulting in a large liquid fraction high in styrene, leaving little residual organic material on the surface of the glass fibers. At a pyrolysis temperature of 500 °C, the degradation of the polymer matrix was incomplete, and at 900 °C, glass fibers were destroyed in the presence of CaO, leaving CaSiO3 as a product.  相似文献   

14.
Fermentation can use renewable raw materials as substrate, which makes it a sustainable method to obtain H2. This study evaluates H2 production by a mixed culture from substrates such as glucose and derivatives from sugarcane processing (sucrose, molasses, and vinasse) combined with landfill leachate. The leachate alone was not a suitable substrate for biohydrogen production. However, leachate blended with glucose, sucrose, molasses, or vinasse increased the H2 production rate by 2.0-, 2.8-, 4.6-, and 0.5-fold, respectively, as compared with the substrates without the leachate. Determination of metals (Cu, Cd, Pb, Hg, Ni, and Fe) at the beginning and at the end of the fermentative assays showed how they were consumed during the fermentation and demonstrated improved H2 production. During fermentation, Cu, Fe, and Cd were the most consumed leachate metals. The best substrate combination to produce H2 was molasses and leachate, which gave high volumetric productivity—469 ml H2/l h. However, addition of the leachate to the substrates stimulated lactic acid formation pathways, which lowered the H2 yield. The use of leachate combined with sugarcane processing derivatives as substrates could add value to the leachate and reduce its polluting power, generating a clean energy source from renewable raw materials.  相似文献   

15.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

16.
Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L−1. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L−1 h−1) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.  相似文献   

17.
Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.  相似文献   

18.
Environmental assessment of residue disposal needs to account for long-term changes in leaching conditions. Leaching of heavy metals from incineration residues are highly affected by the leachate pH; the overall environmental consequences of disposing of these residues are therefore greatly influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range of pH values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1) corresponding to about 100,000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues.  相似文献   

19.
Endocrine-disrupting chemicals (EDCs) in landfill leachates and the effluent from leachate treatment facilities have been analyzed by many researchers. However, seasonal and yearly variations and the influence of landfill age are still not clear. In this study, leachate was sampled on four occasions each, at different seasons, from two MSW landfills which receive different waste material. Then, the quantities of alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs) in leachate were determined. By sampling leachate from landfill cells of different age, the long-term behavior of EDCs was studied. Furthermore, leachate was also sampled at different points in the process of a leachate treatment system, and then the behavior of EDCs in the facility was studied. The concentrations of APs were as low as in surface waters, and OTs were not detected (detection limit was 0.01 microg/l), while BPA and DEHP, which were the most abundant of the four substances measured as PAEs, were found in all the leachates that were measured. Concentrations of BPA and DEHP were almost constant regardless of season, except for a couple of low concentrations observed for BPA. The varying composition of landfilled waste did not influence BPA and DEHP in leachate. Concentration of BPA in raw leachate tends to decrease as the years go by, but the concentration of DEHP was observed to remain at a constant level. BPA was considerably degraded by aeration for leachates from the two landfills, except when the leachate temperature was low. Aeration, coagulation/sedimentation, and biological treatment could not remove DEHP.  相似文献   

20.
This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号