首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.  相似文献   

2.
The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.  相似文献   

3.
This study presents alternative methods for the processing of concrete waste. The mechanical stresses needed for the embrittlement of the mortar matrix and further selective crushing of concrete were generated by either electric impulses or microwaves heating. Tests were carried out on lab-made concrete samples representative of concrete waste from concrete mixer trucks and on concrete waste collected on a French demolition site. The results obtained so far show that both techniques can be used to weaken concrete samples and to enhance aggregate selective liberation (that is the production of cement paste-free aggregates) during crushing and grinding. Electric pulses treatment seems to appear more efficient, more robust and less energy consuming (1–3 kW h t?1) than microwave treatment (10–40 kW h t?1) but it can only be applied on samples in water leading to a major drawback for recycling aggregates or cement paste in the cement production process.  相似文献   

4.
The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view.  相似文献   

5.
One methodology is proposed to estimate the quantification and composition of building-related construction and demolition (C&D) waste in a fast developing region like Shanghai, PR China. The varieties of structure types and building waste intensities due to the requirement of progressive building design and structure codes in different decades are considered in this regional C&D waste estimation study. It is concluded that approximately 13.71 million tons of C&D waste was generated in 2012 in Shanghai, of which more than 80% of this C&D waste was concrete, bricks and blocks. Analysis from this study can be applied to facilitate C&D waste governors and researchers the duty of formulating precise policies and specifications. As a matter of fact, at least a half of the enormous amount of C&D waste could be recycled if implementing proper recycling technologies and measures. The appropriate managements would be economically and environmentally beneficial to Shanghai where the per capita per year output of C&D waste has been as high as 842 kg in 2010.  相似文献   

6.
Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4 N H2SO4 in triplicate at 70 °C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4 N H2SO4. However, the composites made from wood treated with 0.2 N H2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz).  相似文献   

7.
Garden waste generation and composition were studied in Aarhus, Denmark. The amount of garden waste generated varied seasonally, from 2.5 kg person?1 month?1 in winter to 19.4 kg person?1 month?1 in summer. Seasonal fractional composition and chemical characterization of garden waste were determined by sorting and sampling garden waste eight times during 1 year. On a yearly basis, the major fraction of garden waste was “small stuff” (flowers, grass clippings, hedge cuttings and soil) making up more than 90% (wet waste distribution) during the summer. The woody fractions (branches, wood) are more significant during the winter. Seasonal trends in waste chemical composition were recorded and an average annual composition of garden waste was calculated, considering the varying monthly generation and material fraction composition: the wet garden waste contained 40% water, 30% organic matter (VS) and 30% ash. The ash content suggests that the garden waste contains a significant amount of soil. This is in particular the case during summer. Of nutrients, the garden waste contained in average on a dry matter basis 0.6% N, 0.1% P, and 1.0% K. However, the contents varied significantly among the fractions and during the year. The content of trace elements (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) was low.  相似文献   

8.
This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.  相似文献   

9.
The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64 ± 15 g/patient/d for the clinical pathology laboratory, 7.2 ± 1.6 g/patient/d for the X-ray laboratory, 8.3 ± 5.1 g/patient/d for the surgery departments and 24 ± 9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03 ± 0.003 L/patient/d and for the X-ray laboratory was 0.06 ± 0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.  相似文献   

10.
Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin.In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment.As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%.The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723–773 K in air atmosphere and screening of 0.5 mm. Silica was removed and 70% of tantalum grade was obtained after more than 823 K heating and separation.Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process.The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional one.The process for recovering tantalum used more heat for the treatment and therefore the energy consumption increased by 50%, when comparing with conventional process. However, the market price for tantalum is very large; the profit for tantalum recovery is added. Also the environmental burden decreased by the recycling of tantalum recovery. Therefore, the tantalum recovery is very important step in the PCB recycling. If there is no tantalum, the consumed energy and treatment cost increase in the new process, though the environmental burden decreases.  相似文献   

11.
This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.  相似文献   

12.
Spent bleaching earth (SBE) is a waste generated by the edible oil industry that currently has limited options for beneficial reuse. In excess of ~2 million tonnes per year of SBE is generated world-wide with major quantities available in the middle-east where significant volumes of edible oils are produced. Low pressure compaction followed by heat treatment at 150 °C causes polymerisation of the residual organic components in SBE and this produces monolithic samples with high unconfined compressive strengths (54 MPa). SBE can therefore be used to manufacture novel clay blocks for use in construction that are bonded by polymerised vegetable oil. This represents a new, innovative and resource efficient application for SBE. In this research, commercial SBE has been characterised and the effects of key processing variables (temperature and compaction pressure) on the compressive strength, porosity and density of the SBE clay blocks are reported and the mechanisms responsible for strength development are discussed.  相似文献   

13.
Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia’s steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag – 30 wt.% ball clay – 10 wt.% feldspar – 20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.  相似文献   

14.
The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO2 were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 °C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy.With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 °C homogeneously porous granules with a density down to 0.42 g/cm3 were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 °C densities from 0.57 to 0.82 g/cm3 were obtained.  相似文献   

15.
Worldwide, the amount of end-of-life vehicles (ELVs) reaches 50 million units per year. Once the ELV has been processed, it may then be shredded and sorted to recover valuable metals that are recycled in iron and steelmaking processes. The residual fraction, called automotive shredder residue (ASR), represents 25% of the ELV and is usually landfilled. In order to deal with the leachable fraction of ASR that poses a potential threat to the environment, a washing treatment before landfilling was applied. To assess the potential for full-scale application of washing treatment, tests were carried out in different conditions (L/S = 3 and 5 L/kgTS; t = 3 and 6 h). Moreover, to understand whether the grain size of waste could affect the washing efficiency, the treatment was applied to ground (<4 mm) and not-ground samples. The findings obtained revealed that, on average, washing treatment achieved removal rates of more than 60% for dissolved organic carbon (DOC), chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN). With regard to metals and chlorides, sulphates and fluoride leachable fraction, a removal efficiency of approximately 60% was obtained, as confirmed also by EC values. The comparison between the results for ground and not-ground samples did not highlight significant differences.  相似文献   

16.
Use of selected waste materials in concrete mixes   总被引:2,自引:0,他引:2  
A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.  相似文献   

17.
Mixed glass cullet (crushed recycled glass containers) is stockpiled uncovered before use as roadway construction aggregate or daily cover in landfills. Rainwater that leaches through the stockpiles dissolves and suspends contaminants such as those from food residuals and paper labels. The objective of this study was to determine leachate quantity and quality from cullet stockpiles as a basis for development of Best Management Practices (BMPs). Four 35-tonne field stockpiles were set up for leachate analysis and to determine the effects of mechanical turning treatment on the leachate. Field-collected leachate and laboratory-generated washwater of cullet (water:cullet = 3:1 by weight) were both analyzed for basic wastewater parameters, which showed pollutant levels comparable to or higher than those of untreated domestic wastewater or urban stormwater. While organic contamination decreased substantially (e.g., washwater BOD > 95% reduction), TKN and total-phosphorus levels in leachate ranged between 11.6–154 mg L?1 and 1.6–12.0 mg L?1, respectively, and remained comparable to levels found in untreated domestic wastewater after four months. Turning enhanced the degradation of the organic constituents inside the stockpiles, which was confirmed by elevated temperatures. Based on this study, leachate from glass cullet stockpiles should not be released to surface water. For leachate from long-term cullet stockpiles, release to groundwater should be only done after treatment to reduce nitrogen levels.  相似文献   

18.
Cylindrical cyclone media separators using a suspended calcite separation media simulating industrial scale operations are demonstrated to effectively separate a wide variety of forms and a greater range of particle sizes of plastics by density than presently recycled. Purities of plastic products and recoveries obtained from mixed plastic wastes are comparable to those reported for established separations. Products of ≈100% purity with recoveries of >99% were obtained for high density fractions and >98% purities and recoveries for the low density fractions. Cyclonic centrifugal forces and/or the fine particle size of the separation media appear to minimize hydroscopic and particle shape effects.A mathematical model is proposed for defining plastic waste feed rates and treatable particle size ranges for the LARCODEMS media separator.Waste plastic separations yielded Ecart probable (Ep) values ?0.024 for a water only separation media. The Ep for 1.1 g cm?3 separation medias was <0.032 with minimal to no variation in values for 1–8 mm particle sizes. Variation in the quality of separations is shown to be minimal with <72 μm, <45 μm and <2 μm media particle sizes. Media density offset created varied according to particle size.  相似文献   

19.
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d?1), 54.6% of total recyclable wastes (51.49 ton d?1) and 68.29% of readily recyclable wastes (41.19 ton d?1). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.  相似文献   

20.
Large direct shear testing (300 mm × 300 mm box) of municipal solid waste (MSW) collected from a landfill located in the San Francisco Bay area was performed to gain insight on the shear response of MSW. The study investigated the effects of waste composition, confining stress, unit weight, and loading rate on the stress–displacement response and shear strength of MSW. The amount and orientation of the fibrous waste materials in the MSW were found to play a critical role. The fibrous material had little effect on the MSW’s strength when it was oriented parallel to the shear surface, as is typically the case when waste material is compressed vertically and then tested in a direct shear apparatus. Tests in which the fibrous material was oriented perpendicular to the horizontal shear surface produced significantly stronger MSW specimens. The test results indicate that confining stress and loading rate are also important factors. Based on 109 large-scale direct shear tests, the shear strength of MSW at low moisture contents is best characterized by cohesion = 15 kPa, friction angle = 36° at a normal stress of 1 atmosphere, and a decrease in the friction angle of 5° for every log-cycle increase in normal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号