共查询到20条相似文献,搜索用时 15 毫秒
1.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4. 相似文献
2.
Landfill cover soils oxidize a considerable fraction of the methane produced by landfilled waste. Despite many efforts this oxidation is still poorly quantified. In order to reduce the uncertainties associated with methane oxidation in landfill cover soils, a simulation model was developed that incorporates Stefan-Maxwell diffusion, methane oxidation, and methanotrophic growth. The growth model was calibrated to laboratory data from an earlier study. There was an excellent agreement between the model and the experimental data. Therefore, the model is highly applicable to laboratory column studies, but it has not been validated with field data. A sensitivity analysis showed that the model is most sensitive to the parameter expressing the maximum attainable methanotrophic activity of the soil. Temperature and soil moisture are predicted to be the environmental factors affecting the methane oxidizing capacity of a landfill cover soil the most. Once validated with field data, the model will enable a year-round estimate of the methane oxidizing capacity of a landfill cover soil. 相似文献
3.
Limits and dynamics of methane oxidation in landfill cover soils 总被引:1,自引:0,他引:1
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations. 相似文献
4.
Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation 总被引:1,自引:0,他引:1
Stern JC Chanton J Abichou T Powelson D Yuan L Escoriza S Bogner J 《Waste management (New York, N.Y.)》2007,27(9):1248-1258
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%. 相似文献
5.
Chart Chiemchaisri Wilai Chiemchaisri Kittipon Chittanukul Wiwattana Soontornlerdwanich Nathiya Tanthachoon 《Journal of Material Cycles and Waste Management》2010,12(2):161-168
The effect of leachate irrigation on methanotrophic activity in sandy loam-based landfill cover soil with vegetation was investigated.
Laboratory-scale experiments were conducted to investigate the methane oxidation reaction in cover soil with and without plants
(tropical grass). The methane oxidation rate in soil columns was monitored during leachate application at different organic
concentrations and using different irrigation patterns. The results showed that the growth of plants on the final cover layer
of landfill was promoted when optimal supplement nutrients were provided through leachate irrigation. The vegetation also
helped to promote methane oxidation in soil, whereas leachate application helped increase the methane oxidation rate in nonvegetated
cover soil. Intermittent application of leachate (once every 4 days) improved the methane oxidation activity as compared to
daily application. Nevertheless, the adverse effects of organic overloading on methane oxidation rate and plant growth were
also observed. 相似文献
6.
7.
Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils 总被引:2,自引:0,他引:2
Mahieu K De Visscher A Vanrolleghem PA Van Cleemput O 《Waste management (New York, N.Y.)》2008,28(9):1535-1542
A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between (12)CH(4), (13)CH(4), and (12)CH(3)D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7vol% in the concentration and a RMSD of 0.8 per thousand in the delta(13)C value, with delta(13)C the relative (13)C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods. 相似文献
8.
Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a “bio-tarp” was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation.Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions. 相似文献
9.
Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers 总被引:2,自引:0,他引:2
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level. 相似文献
10.
Unpleasant odours generated from waste management facilities represent an environmental and societal concern. This multi-year study documented odour and total reduced sulfur (TRS) abatement in four experimental landfill biocovers installed on the final cover of the Saint-Nicéphore landfill (Canada). Performance was evaluated based on the reduction in odour and TRS concentrations between the raw biogas collected from a dedicated well and the emitted gases at the surface. Odour analyses were carried out by the sensorial technique of olfactometry, whereas TRS analyses followed the pulse fluorescence technique. The large difference of 2–5 orders of magnitude between raw biogas (average odour concentration = 2,100,000 OU m?3) and emitted gases resulted in odour removal efficiencies of close to 100% for all observations. With respect to TRS concentrations, abatement efficiencies were all greater than 95%, with values averaging 21,000 ppb of eq. SO2 in the raw biogas. The influence of water infiltration on odour concentrations was documented and showed that lower odour values were obtained when the 48-h accumulated precipitation prior to sampling was higher. 相似文献
11.
Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions
Abichou T Mahieu K Chanton J Romdhane M Mansouri I 《Waste management (New York, N.Y.)》2011,31(5):978-986
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, Km, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field. 相似文献
12.
Methane oxidation in a landfill cover with capillary barrier 总被引:6,自引:0,他引:6
Berger J Fornés LV Ott C Jager J Wawra B Zanke U 《Waste management (New York, N.Y.)》2005,25(4):369-373
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration. 相似文献
13.
S. Ait-Benichou Louis-B. Jugnia Charles W. Greer Alexandre R. Cabral 《Waste management (New York, N.Y.)》2009,29(9):2509-2517
The dynamics and changes in the potential activity and community structure of methanotrophs in landfill covers, as a function of time and depth were investigated. A passive methane oxidation biocover (PMOB-1) was constructed in St-Nicéphore MSW Landfill (Quebec, Canada). The most probable number (MPN) method was used for methanotroph counts, methanotrophic diversity was assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the pmoA gene and the potential CH4 oxidation rate was determined using soil microcosms. Results of the PMOB-1 were compared with those obtained for the existing landfill cover (silty clay) or a reference soil (RS). During the monitoring period, changes in the number of methanotrophic bacteria in the PMOB-1 exhibited different developmental phases and significant variations with depth. In comparison, no observable changes over time occurred in the number of methanotrophs in the RS. The maximum counts measured in the uppermost layer was 1.5 × 109 cells g dw?1 for the PMOB-1 and 1.6 × 108 cells g dw?1 for the RS. No distinct difference was observed in the methanotroph diversity in the PMOB-1 or RS. As expected, the potential methane oxidation rate was higher in the PMOB-1 than in the RS. The maximum potential rates were 441.1 and 76.0 μg CH4 h?1g dw?1 in the PMOB and RS, respectively. From these results, the PMOB was found to be a good technology to enhance methane oxidation, as its performance was clearly better than the starting soil that was present in the landfill site. 相似文献
14.
In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume. 相似文献
15.
Kinetics of microbial landfill methane oxidation in biofilters 总被引:1,自引:0,他引:1
A methane oxidizing biofilter system fitted to the passive venting system of a harbor sludge landfill in Germany was characterized with respect to the the methanotrophic population, methane oxidizing capacity, and reaction kinetics. Methanotrophic cell counts stabilized on a high level with 1.3 x 10(8) to 7.1 x 10(9) cells g dw(-1) about one year after first biofilter operation, and a maximum of 1.2 x 10(11) cells g dw(-1). Potential methane oxidizing activity varied between 5.3 and 10.7 microg h(-1) g dw(-1). Cell numbers correlated well with methane oxidation activities. Extrapolation of potential activities gave methane removal rates between 35 and 109 g CH4 h(-1) m(-3), calculated for 30 degrees C. Optimum temperature was 38 degrees C for freshly sampled biofilter material and 22 degrees C for a methanotrophic enrichment culture grown at 10 degrees C incubation temperature. Substrate kinetics revealed the presence of a low-affinity methane oxidizing community with a high Vmax of 1.78 micromol CH4 h(-1) g ww(-1) and a high K(M) of 15.1 microM. K(MO2) for methane oxidation was 58 microM. No substantial methane oxidizing activity was detected below 1.7-2.6 vol.-% O2 in the gaseous phase. Methane deprivation led to a decrease in methane oxidation activity within 5-9 weeks but could still be detected after 25 weeks of substrate deprivation and was fully restored within 3 weeks of continuous methane supply. Very high salt loads are leached from the novel biofilter material, expanded clay, yielding electric conductivity values of up to 15 mS cm(-1) in the leachate. Values > 6 mS cm(-1) were shown to depress methane consumption. Water retention characteristics of the material proved to be favourable for methane oxidizing systems with a gas permeable volume of 78% of bulk volume at field capacity water content. Correspondingly, no influence of water content on methane oxidation activity could be detected at water contents between 2.5 and 20 vol.-%. 相似文献
16.
Observations on the methane oxidation capacity of landfill soils 总被引:1,自引:0,他引:1
Chanton J Abichou T Langford C Spokas K Hater G Green R Goldsmith D Barlaz MA 《Waste management (New York, N.Y.)》2011,31(5):914-925
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it. 相似文献
17.
Methane emissions from active or closed landfills can be reduced by means of microbial methane oxidation enhanced by properly designed landfill covers and engineered biocovers. Composts produced using different waste materials have already been proven to support methane oxidation, and may represent a low-cost alternative to other suitable substrates such as sandy or humic-rich soils, which are frequently not available in sufficient amounts or are too costly. In the present study a data set of 30 different compost materials (different age and input materials) and mixtures, as well as seven soils and mineral substrates were tested to assess methane oxidation rate under similar conditions in a laboratory column set-up. Multivariate data analysis (discriminant analysis) was applied to predict the influence of 21 different parameters (chemical, maturation and physical) on methane oxidation rate in a PLS-DA model. The results show that bulk density, total nutrient content (nitrogen and phosphorus), as well as the quantity and quality (with respect to maturity) of organic matter determined methane oxidation rate in this data set. The model explained 50% of the data variation, indicating how characterisation of oxidation rate by single, even diverse conventional parameters was limited. Thus for the first time, Fourier Transform Infrared (FTIR) spectroscopy was applied to a series of samples to better determine the characteristics of methane-oxidising materials. The initial data obtained in this study appear to be most promising. The prediction of specific methane oxidation rate of a potential biocover material from FTIR spectra and multivariate data analyses is a target to be focused on in the future. 相似文献
18.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material. 相似文献
19.
Reichenauer TG Watzinger A Riesing J Gerzabek MH 《Waste management (New York, N.Y.)》2011,31(5):843-853
Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content. 相似文献
20.
Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill 总被引:1,自引:0,他引:1
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site. 相似文献