首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment.The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range.In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.  相似文献   

2.
Journal of Material Cycles and Waste Management - A feasible process for preparing lightweight building materials from the low-silicate iron tailings was developed. Various proportions of...  相似文献   

3.
Reuse of thermosetting plastic waste for lightweight concrete   总被引:1,自引:0,他引:1  
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm(2) and 1395kg/m(3), respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.  相似文献   

4.
The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.  相似文献   

5.
Currently, wet bottom ash is not sufficiently utilized due to its content of unburned coal, chloride and moisture. In contrast, bottom ash discharged from the recently introduced dry process spends a longer time on the clinker conveyer in the lower part of the boiler and consequently contains a significantly smaller amount of unburned coal. Consequently, it has high potential for use as a lightweight aggregate for construction material because of properties such as high porosity, low unburned coal content, non-chloride, and non-moisture. However, it is not frequently used for construction because the ash particle has a flat and thin shape, coarse surface and unfavorable structural strength. Against this backdrop, this study has conducted a range of experiments to identify the shapes, structure, density, absorption, percentage of floating particles, unit volume weight, solid volume, characteristics of air bubbles and micro pores, crushing strength of bottom ash, and the following results were observed. Though the dry bottom ash has sharp and angular edges, its flat and thin shapes lead to vulnerable structures. Dry bottom ash of the size of 0.6 mm or larger has 50–60 % of the total pore rate and 30–50 % of the closed pore rate. Considering these qualities, by removing the relatively fragile surface parts and making the particles more globular, dry bottom ash can be used as a lightweight aggregate for construction field having outstanding performance in terms of light weight and insulation.  相似文献   

6.
In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative.  相似文献   

7.
采用润湿好气-腐解培养法,研究有机物料对废碱锰电池的溶解作用,分析了培养时间对pH值,N,K,Zn和Mn溶出的影响。结果表明,稻草、鸡粪和鸽子粪处理培养过程中产生腐殖酸对废电池干粉均有溶解作用,其pH值明显降低;所有处理TN,Zn,Mn都呈现先增加后减小的趋势,15 d时溶量最大,以鸽子粪处理溶出较多;TK的溶出较慢,培养到10 d后才有溶出,均呈现逐渐增大的趋势;而TP溶出则规律性不强。  相似文献   

8.
State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically "stabilized" leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a "substrate" that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.  相似文献   

9.
This work presents research results on the evaluation of environmental effects of utilizing chromic waste in chromium compound production processes. The comprehensive evaluation of three chromium compound production models takes into consideration the total cumulated hazard coefficients. The implementation of the new chromium compound production model into industrial practice in 1999 allows the hazard to the natural environment to decrease by 75% in relation to the hazard caused by the old production model used until 1995. The coefficient of the target chromium compound production model was 199%, much higher than 100%. This results from the negative values of the total cumulated hazard coefficients for those cases where the sodium chromate production unit could be a big "consumer" of chromic waste.  相似文献   

10.
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.  相似文献   

11.
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm3 reactor, swept with 1 L min?1 N2, at 500 °C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33–40 MJ kg?1). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO2; their HHV is in the range of 18–46 MJ kg?1. The amount of COCO2 increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.  相似文献   

12.
介绍了废聚乙烯塑料膜及制品的循环再生利用技术。原料100%采用废聚乙烯塑料膜;不需造粒、熔粒,直接一次熔融制成新塑料膜;再生的农用地膜和包装膜经权威部门检验测试,各项质量技术指标均达到或超过国家标准,少部分指标超国标5倍以上。由于减少了工序,节约了能源,降低了成本,彻底突破了传统工艺在废聚乙烯塑料膜再生利用过程中,只能添加10%废料的约束;解决了必须经过造粒、二次熔融才能成膜的技术难题。其生产工艺独特、新颖,无"三废"产生。为节约资源、节约能源、循环经济、综合利用、减少污染、保护环境,创出了一条全新的技术途径。  相似文献   

13.
The importance of systematic trends in trace contaminant leaching from waste materials and stabilized waste is stressed. Similarities in leaching behaviour of different waste materials and mechanisms for leaching from stabilized waste forms are identified. The use of diffusion measurements to quantify the mobility of specific chemical species in waste and soil is discussed. Implementation of more fundamental regulatory testing procedures which reflect the behaviour of materials in end use applications, is recommended to allow better control over environmental impact in the wide variety of utilization and disposal practices.  相似文献   

14.
Journal of Material Cycles and Waste Management - To improve the effects of leachate concentrates recirculation, the quality of effluent is studied from three columns with different fill age waste....  相似文献   

15.
This paper gives an overview of the results of a research project into the possibilities of immobilising polycyclic aromatic hydrocarbons (PAH), that are present in waste materials. The results show that with hydraulic binders the waste materials can be solidified. The PAH do still leach to a relatively high extent. However, this PAH leaching can be decreased by more than a factor 10 by means of the addition of a specific additive. The immobilisation product fulfils technological requirements for the use as a road base construction material, such as compressive strength.  相似文献   

16.
The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs. The US EPA's National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management or materials recovery programs. The environmental methodology is based on the use of life-cycle assessment and the cost methodology is based on the use of full-cost accounting. Life-cycle inventory (LCI) environmental impacts and costs are calculated from the point of collection, handling, transport, treatment, and disposal. For any materials that are recovered for recycling, offsets are calculated to reflect potential emissions savings from use of virgin materials. The use of the MSW-DST provides a standardized format and consistent basis to compare alternatives. This paper provides an illustration of how the MSW-DST can be used by evaluating ten management strategies for a hypothetical medium-sized community to compare the life-cycle environmental and cost tradeoffs. The LCI results from the MSW-DST are then used as inputs into another US EPA tool, the Tool for the reduction and assessment of chemical and other environmental impacts, to convert the LCI results into impact indicators. The goal of this paper is to demonstrate how the MSW-DST can be used to identify and balance multiple criteria (costs and environmental impacts) when evaluating options for materials and waste management. This type of approach is needed in identifying strategies that lead to reduced waste and more sustainable resource consumption. This helps to meet the goals established in the US EPA's Resource Conservation Challenge.  相似文献   

17.
Journal of Material Cycles and Waste Management - The article presents data from new compositions of construction materials developed from three types of Kazakhstan enterprises’ industrial...  相似文献   

18.
The organic fraction of municipal solid wastes in Southeast Asia, which has a high moisture content, accounts for a large proportion of total waste. Local governments need to pay adequate attention to the composition of wastes to determine alternative waste management technologies. This study proposed the use of a triangle diagram to describe changes in proximate composition and rates of successful source separation of municipal solid waste and to identify technical challenges about alternative waste management technologies such as incineration, composting, and refuse-derived fuel production based on physical and proximate composition analysis of household waste sampled in Hanoi, Vietnam, as a case study. The analysis indicated the effectiveness of different types of source separation as well as different levels of successful achievement of source separation as an adjustment mechanism for the proximate composition of waste. Proper categorization of wastes for source separation is necessary for the appropriate use of alternative waste management technologies. The results showed that, at a source separation rate of just greater than 0.52 in a three-way separation scheme, the waste separated as combustible waste would be suitable for incineration with energy recovery. Based on well-designed schemes of source separation, alternative waste management technologies can be applied.  相似文献   

19.
主要阐述了双氰胺废渣的主要成份及它在纲丝隔离胶及三角胶芯胶中的应用并与原助剂进行了比较.  相似文献   

20.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号