共查询到20条相似文献,搜索用时 0 毫秒
1.
Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting. 相似文献
2.
A new method to simplify calculation the kinetics model is applied to sewage sludge pyrolysis based on the assumption that volatile run out as soon as it formed and during temperature arising process in this study. Difference method widely used to solve math problems is conducted to calculate kinetics parameters. Pyrolysis experiments are carried out at heating rates of 10, 15, 20, and 50 °C/min. All the TG curves are divided into three parts which are beginning decomposition temperature range, main decomposition temperature range, and final decomposition temperature range. The second one is employed to determine the parameters for more than 70% of the total mass loss occurs in this range. According to the developed method, the react order, reaction energy and pre-exponential factor are obtained, which are in the range of 3.9–4.1, 82.3–109.2 kJ/mol and 7.7 × 10 6–2.8 × 10 9/min, respectively, which are in the range of that reported previously. As a comparison experimental data with calculated data, the well fitting results indicate that this method is appropriate for simulating sludge pyrolysis kinetics. 相似文献
3.
Journal of Material Cycles and Waste Management - High-solids thermophilic anaerobic digestion fed with sewage sludge of 7–8% and 9–10% total solids was investigated at the hydraulic... 相似文献
4.
A life cycle assessment was carried out to estimate the environmental impact of sewage sludge as secondary raw material in cement production. To confirm and add credibility to the study, uncertainty analysis was conducted. Results showed the impact generated from respiratory inorganics, terrestrial ecotoxicity, global warming, and non-renewable energy categories had an important contribution to overall environmental impact, due to energy, clinker, and limestone production stages. Also, uncertainty analysis results showed the technology of sewage sludge as secondary raw material in cement production had little or no effect on changing the overall environmental potential impact generated from general cement production. Accordingly, using the technology of sewage sludge as secondary raw material in cement production is a good choice for reducing the pressure on the environment from dramatically increased sludge disposal. In addition, increasing electricity recovery rate, choosing natural gas fired electricity generation technology, and optimizing the raw material consumption in clinker production are highly recommended to reduce the adverse effects on the environment. 相似文献
5.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha ?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2 3 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/ E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/ E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA. 相似文献
6.
Sorption capacities were evaluated for the dissolved stormwater (SW) pollutants onto two tree mulches and jute fiber. SW spiked with predetermined concentrations of copper (Cu), cadmium (Cd), hexavalent chromium (Cr +6), lead (Pb), zinc (Zn), and benzo[a]pyrene (B[a]P), naphthalene (NP), fluoranthene (FA), 1,3‐dichlorobenzene (DCB), and butylbenzylphthalate (BBP) were used in this study. Each medium removed close to 100 percent of all the pollutants at the concentrations studied. Sorption capacities (μg/g) of the three organic media were in the order of jute > hardwood mulch > softwood mulch, and on a mole basis, both the heavy metals and the toxic organics were sorbed by the three media in an identical sequence: Cr +6 > Cu, Zn > Cd > Pb; and NP > DCB > FA > B[a]P > BBP. Sorption capacities of the hardwood wood mulch and jute fiber for the pollutants were correlated with distinctive physical properties of the pollutants. © 2005 Wiley Periodicals, Inc. 相似文献
7.
Three sewage sludge composts were obtained from mixtures of an aerobic sludge (AS) and three organic wastes differing widely in chemical composition: an extremely biodegradable waste (municipal solid waste, MSW), a plant residue (grape debris) and a residue with a carbon fraction not easily mineralizable (peat residue). The following mixtures were made, the proportions referring to their total organic carbon content: AS-MSW 1/1, AS-GRAPE 3/1 and AS-PEAT 1/1. These mixtures were composted over 3 months in the open air with periodical turning, and were left to mature afterwards for 4 months. Uncomposted mixtures and composted mixtures, before and after maturation, were incubated for 38 days, under laboratory conditions, with a calcareous soil and the CO 2 emission of the samples periodically measured.Uncomposted mixtures emitted much greater quantities of carbon than those composted, whether before or after maturation period. Both at the beginning and at the end of composting, differences were observed between the total amount of carbon emitted by the mixture containing peat waste and the others. However, the quantities of carbon emitted from the three mixtures tended to even out in mature composts, reaching a maximum of 600 mg carbon per 100 g total organic carbon. This shows that, although the mineralization of carbon depends on the nature of the organic waste mixed with the sewage sludge, it tends to even out when the mixtures have undergone composting. 相似文献
8.
The purpose of this study is to introduce an efficient drying method named “fry-drying technology” for the treatment of sewage
sludge. The basic principle of this method lies in the rapid escape of moisture from sludge material through its pores into
the oil medium driven by the strong pressure gradient formed between sludge and oil media. This beneficial pressure distribution
for moisture transfer can be established by the subtle combination of the difference of physical properties of specific heat
and boiling temperature between water and oil. In order to determine the physical characteristics of this fry-drying technology,
a series of experiments were performed in which important parameters, such as heating oil temperature, drying time, oil type,
and sludge size, were varied. Numerical calculations using a single solid spherical particle model without any porosity were
used to resolve the particle size effect associated with sludge drying. 相似文献
9.
Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations set by Directive 91/271/EC, a temporary increase of sludge amounts that are disposed in landfills is expected during the following years in EU-12 countries. Beside the above, sludge reuse in land and sludge incineration seem to be the main practices further adopted in EU-27 (all Member States) up to 2020. The reinforcement of these disposal practices will probably result to adoption of advanced sludge treatment technologies in order to achieve higher pathogens removal, odors control and removal of toxic compounds and ensure human health and environmental protection. 相似文献
10.
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC).Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, at temperatures of approx. 450-500 °C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis.Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge. 相似文献
11.
Preparation of activated carbon from sewage sludge is a promising way to produce a useful adsorbent for pollutants removal as well as to dispose of sewage sludge. The objective of this study was to investigate the physical and chemical properties of the activated carbon made from sewage sludge so as to give a basic understanding of its structure. The activated carbon was prepared by activating anaerobically digested sewage sludge with 5 M ZnCl2 and thereafter pyrolyzing it at 500 degrees C for 2 h under nitrogen atmosphere. The properties investigated in the present study included its surface area and pore size distribution, its elemental composition and ash content, its surface chemistry structure and its surface physical morphology. Furthermore, its adsorption capacities for aqueous phenol and carbontetrachloride were examined. The results indicated that the activated carbon made from sewage sludge had remarkable micropore and mesopore surface areas and notable adsorption capacities for phenol and carbon-tetrachloride. In comparison with commercial activated carbons, it displayed distinctive physical and chemical properties. 相似文献
12.
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500 °C and reaction residence time of 0, 30, 60 min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375 °C and 0 min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel. 相似文献
13.
The drivers for increasing incineration of sewage sludge and the characteristics of the resulting incinerated sewage sludge ash (ISSA) are reviewed. It is estimated that approximately 1.7 million tonnes of ISSA are produced annually world-wide and is likely to increase in the future. Although most ISSA is currently landfilled, various options have been investigated that allow recycling and beneficial resource recovery. These include the use of ISSA as a substitute for clay in sintered bricks, tiles and pavers, and as a raw material for the manufacture of lightweight aggregate. ISSA has also been used to form high density glass–ceramics. Significant research has investigated the potential use of ISSA in blended cements for use in mortars and concrete, and as a raw material for the production of Portland cement. However, all these applications represent a loss of the valuable phosphate content in ISSA, which is typically comparable to that of a low grade phosphate ore. ISSA has significant potential to be used as a secondary source of phosphate for the production of fertilisers and phosphoric acid. Resource efficient approaches to recycling will increasingly require phosphate recovery from ISSA, with the remaining residual fraction also considered a useful material, and therefore further research is required in this area. 相似文献
14.
In the past years, wastewater treatment plants (WWTP) in Germany have often been enlarged or expanded. However, it has become evident that the prognosticated increase in wastewater amount has not become a reality and thus free capacities, particularly in the sewage sludge digesters, are available. A possibility for the use of these available capacities is the fermentation of sewage sludge together with organic waste. A feasibility study for two different wastewater treatment plants in Germany was done in order to estimate if fermentation of the organic fraction of municipal solid waste (OFMSW) affects the wastewater treatment plant operation. In this study, the technical, economic and ecological aspects of co-digestion were investigated for the plants selected. 相似文献
15.
城市污泥既是污染物又是一种资源.从土地利用、回收能源和生产建材等几个方面对污泥资源化利用的途径进行了介绍,指出了从源头控制污泥中重金属的含量对土地利用的重要性,讨论了利用污泥生产水泥的方法. 相似文献
17.
The effect of the soil solids concentration in batch tests on the measured values of the partition coefficient ( K
p) of organic pollutants in landfill liner-soil material was investigated. Since this study was based on the results of batch
and column tests conducted independently, there were limitations to the conclusions derived. The organic compounds tested
were benzene, methylene chloride, toluene, trichloroethylene, and p-xylene. The results of this study showed that as soil solids concentrations increased, the measured K
p values of these organic compounds strongly decreased. The observed values of K
p stabilized when the soil solids concentration was above a certain value. Typical K
p values obtained from batch tests conducted under high soil solids concentrations were close to those obtained from column
tests. It was concluded that the K
p values of organic compounds measured under low soil solids concentrations, i.e., less than 100 g/l, may not correctly simulate
the field situation. Consequently, the values of K
p obtained with low soil solids concentrations can result in an overestimation of the retardation factor of the landfill liner
material.
Received: March 14, 2002 / Accepted: August 25, 2002 相似文献
18.
The disposal of sewage sludge from municipal waste water treatment plants is suffering from raising costs.The gasification is an alternative way of treatment, which can reduce the amount of solid residues that must be disposed from a water treatment plant. The produced gas can be used very flexible to produce electrical energy, to burn it very cleanly or to use it for upgrading.The gasification in the fluidised bed and the gas cleaning with the granular bed filter has shown successful operation. A demonstration plant in Balingen was set up in 2002 and rebuilt to a larger throughput in 2010. As a next step a demonstration plant was built in Mannheim and is now at the end of the commissioning phase. Nowadays the product gas is blended with biogas from sludge fermentation and utilized in a gas engine or combustion chamber to produce heat. In the future the process control for a maximized efficiency and the removal of organic and inorganic impurities in the gas will be further improved. 相似文献
19.
There is no doubt that waste products from fruit and vegetable processing are difficult to manage. In that context, partial substitution of conventional energy substrates by industrial waste is an alternative, as it helps to utilize residues and at the same time to reduce the fixed cost of running business. The aim of the article is to analyse the possibilities of using fruit processing wastes for energy purposes in Poland. The assessment on a country scale was based on the data of the Central Statistical Office. Analogical analysis was based on the data collected from selected production plant. The obtained results show that the fruit processing waste can be successfully utilized for energy purposes. At the same time, problems of organizational nature should not be overlooked, as they can significantly decrease that potential. Although the amount of energy obtained from this source is basically negligible in the Polish energy balance, the environmental factor should not be ignored also. Therefore, the utilization of waste products from fruit processing should be a topic of interest, as it works in two ways, i.e., through reducing the amount of waste and increasing production of renewable energy. 相似文献
20.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. 相似文献
|