首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment.Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.  相似文献   

2.
Physical parameters of 12 co-compost cover materials were experimentally determined and predicted variations in airflow characteristics were evaluated under varying moisture contents. Predicted air-filled porosity showed high correlation with measured air-filled porosity, facilitating development of a reliable model of air-filled porosity that makes it possible to predict the effect of varying moisture content and compost bed height on air-filled porosity and permeability. Predicted air-filled porosity decreased with increasing moisture content and compost depth for all materials. Air-filled porosity of corn stalks, oat straw, soybean straw, leaves, alfalfa hay, wheat straw, silage, wood shavings and sawdust was in the range of 38-99%. Turkey litter, soil compost blend and beef manure showed air-filled porosity values less than 30% near saturation and the bottom of pile. In concert with the findings of other researchers, effective particle size of all materials increased with increasing moisture content from 20% to 80% of water holding capacity (WHC). It increased dramatically near saturation. In general, permeability increased with increasing air-filled porosity and decreasing bulk density, but the relationship between permeability and moisture content is complex. Permeability is dependent on the balance between particle size and air-filled porosity. If the influence of aggregated particle size on the permeability is significant, it will compensate for the effect of reduced air-filled porosity caused by compaction and moisture content. In this case, permeability will increase; in the reverse case, it will decrease. Permeability decreased for corn stalks, oat straw, silage, wood shavings, soybean straw, sawdust, turkey litter and wheat straw with increasing moisture content from 20% WHC to 50% WHC, regardless of the depth of the compost bed. But the permeability increased with increasing moisture level from 50% to 80% WHC at moderate to shallow simulated bed depths. The soil compost blend and leaves showed the permeability increasing when the moisture increased not only from 50% to 80% WHC but also from 20% to 50% WHC. Permeability of alfalfa hay and beef manure always decreased with increasing moisture levels and pile depth. In this study the maximum wet bulk density and mechanical strength decreased with increasing the moisture content. The method described for determining physical properties under varying moisture contents and compost bed depths will be very useful for designing and modeling airflow characteristics of a mortality composting process with a variety of materials.  相似文献   

3.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

4.
This work aims to evaluate the effects of compost treatment of digested sewage sludge on nitrogen behavior in two soils, a Spodosol and an Oxisol soil. Digested sewage sludge was composted with sawdust and woodchips, diluting the total nitrogen to one-fourth (dry mass basis) of its original value. Then, sludge and compost were added to the two soils on an equivalent dry weight basis to consider the risk of NO3- -N leaching. Compost treatment of sewage sludge has slowed down the release of mineral-N to half in the Spodosol and to one-third in Oxisol soil. As a result, NO3- -N concentrations in soils incubated with compost were less than half of the amounts found from soils incubated with digested sludge. Estimates were made of the maximum monthly nitrate to leach from the four combinations of soil and sludge treatment. Application of digested sludge, at a higher nitrogen application rate, resulted in a higher nitrate leaching potential than application of the compost product. Soil type also played an important role, with the Oxisol having slightly higher estimated leaching potential than the Spodosol. The higher nitrate release rate in the Oxisol is counterbalanced by its higher field capacity to lessen the expected difference between the two soils.  相似文献   

5.
Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions.  相似文献   

6.
Provided that infectious prions (PrPSc) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P < 0.05) headspace concentrations of CH4 primarily during the early stages of the first cycle and N2O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrPSc.  相似文献   

7.
The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E4/E6 (lambda at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil.  相似文献   

8.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

9.
Journal of Material Cycles and Waste Management - Rejuvenation of composting of organic wastes (OW) by application of useful potential microbes is an emerging science of solid waste management....  相似文献   

10.
Potential use of sludge ash as a filler in NR was studied. In this study, two grades of sludge ash namely SA-300 and SA-700 were prepared by sintering sludge waste obtained from concentrated natural rubber (NR) latex production at 300 and 700 °C, respectively. Properties of NR filled with various contents of SA-300 and SA-700 were then investigated and compared with those of NR filled with precipitated calcium carbonate (CaCO3). The results reveal that, regardless of the filler type, both scorch time (t s1) and optimum cure time (t c90) decrease whereas hardness and modulus increase with increasing filler loading. At a given loading, both SA-300 and SA-700 give shorter scorch time and cure time with higher hardness and modulus than CaCO3. Due to their higher specific surface area and greater cure activation efficiency, SA-300 and SA-700 provide better reinforcement, i.e., greater tensile strength; tear strength and abrasion resistance than CaCO3. Taken as a whole, it could be said that the two grades of sludge ash could be utilized as rubber fillers with economic advantage.  相似文献   

11.
12.
Journal of Material Cycles and Waste Management - The objectives of this study were to assess the physicochemical, nutrient, and spectral properties of biochar prepared from four major agricultural...  相似文献   

13.
Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5–10, when the required threshold dilution factor ranged from 105 to 106, to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.  相似文献   

14.
Journal of Material Cycles and Waste Management - The recycling potential of water treatment plant (WTP) sludge in asphalt concrete mixes as filler material was assessed in this study. Marshall...  相似文献   

15.
A life cycle assessment was carried out to estimate the environmental impact of sewage sludge as secondary raw material in cement production. To confirm and add credibility to the study, uncertainty analysis was conducted. Results showed the impact generated from respiratory inorganics, terrestrial ecotoxicity, global warming, and non-renewable energy categories had an important contribution to overall environmental impact, due to energy, clinker, and limestone production stages. Also, uncertainty analysis results showed the technology of sewage sludge as secondary raw material in cement production had little or no effect on changing the overall environmental potential impact generated from general cement production. Accordingly, using the technology of sewage sludge as secondary raw material in cement production is a good choice for reducing the pressure on the environment from dramatically increased sludge disposal. In addition, increasing electricity recovery rate, choosing natural gas fired electricity generation technology, and optimizing the raw material consumption in clinker production are highly recommended to reduce the adverse effects on the environment.  相似文献   

16.
The effects of amendment with municipal solid waste compost (MSWC) and anaerobically digested sewage sludge (SS) on the compositional and structural features of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC, SS, and two different Portuguese soils, a sandy Haplic Podzol and a clay loam Calcic Vertisol, which were either unamended or amended with MSWC or SS at a rate of 60tha(-1). The isolated HAs were analyzed for elemental and acidic functional group composition, and by ultraviolet/visible, Fourier transform infrared (FT IR), and fluorescence spectroscopies. The application of MSWC and especially SS to soils determined an increase of C, N, H, and S contents and E(4)/E(6) ratios (i.e., ratios of absorbances at 465 and 665nm), and a decrease of O, COOH, and phenolic OH contents and C/N, C/H, and O/C ratios of soil HAs. The FT IR and fluorescence results showed that the organic amendments, especially SS, caused an increase of the aliphatic character and a decrease of the degrees of aromatic polycondensation, polymerization, and humification of amended soil HAs. Both MSWC and SS affected more markedly the clayey soil HAs than the sandy soil HAs, possibly due to less extended mineralization processes and the protective action of clay minerals on amended soil HAs.  相似文献   

17.
Three cases of infection in which beef tapeworms were transferred to cattle exposed to sewage sludge or septage applied to grass fields are reviewed together with an epizooty of salmonellosis, caused by infected latrine tankwagon used to irrigate a field. Mention is made of proposals on Danish regulations concerning the application of sewage sludge to agricultural soils, and the preventive measures with regard to epidemiological risks which are being discussed.It is concluded that it is possible to apply sewage sludge to agricultural soils without serious infection risks when appropriate preventive measures are taken. In particular raw latrine contents and septage from septic tanks appear to be particularly dangerous when spread on agricultural land.  相似文献   

18.
Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users’ households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n = 74). The estimate from the survey in Copenhagen (n = 1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors’ knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify.  相似文献   

19.
Methods for improving the anaerobic digestion of glycerol (propane-1,2,3-triol) were investigated, particularly the effects of using acclimated sludge as seeding material during start-up. Glycerol was supplied to the anaerobic digester at an organic loading rate of 2.5 g-COD L?1 day?1. Four experimental runs were carried out with varying mixing ratios of acclimated sludge to unacclimated sludge (0, 10, 20, and 33%). Calculations were performed by employing a numerical model, whose parameters were determined by experimental measurements. Methane production rate (MPR) for all runs attained similar stable values around 21.4 mmol L?1 day?1, though more time was required for attaining stable state of methane production with lower mixing ratios of acclimated sludge. The initial MPR calculated was proportional to the mixing ratio of acclimated sludge. Furthermore, molecular biological methods showed that the types of microorganisms observed in all runs were similar. These results indicate that the seeding with different mixing ratios of acclimated sludge did not affect the microbial consortia in the anaerobic digestion approaching stable state, but did affect the cell density of the useful microorganisms at the start of methane fermentation. Consequently, it was confirmed that at a higher mixing ratio of acclimated sludge, the start of methane production became more vigorous.  相似文献   

20.
The validity of total organic carbon (TOC) or total organic halide (TOX) measurements as surrogate analyses to detect harmful emissions of leachate from landfills is examined. Correlations of analyses from over 1400 random samples obtained between 1984 and 1987 were interpreted. TOC frequently includes high background levels of natural organic materials in the soil and should only be used when reliable measurements of this background exist. TOX provides a qualitative indication of the presence of halogenated pollutants, but is unreliable as a quantitative indicator due to the complexity of leachate chemistry. Neither indicator is capable of detecting small quantities of highly toxic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号