首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balaji T  Yokoyama T  Matsunaga H 《Chemosphere》2005,59(8):1169-1174
An adsorption process for the removal of As(V) and As(III) was evaluated under various conditions using zirconium(IV) loaded chelating resin (Zr-LDA) with lysine-Nalpha,Nalpha diacetic acid functional groups. Arsenate ions strongly adsorbed in the pH range from 2 to 5, while arsenite was adsorbed between pH 7 and 10.5. The sorption mechanism is an additional complexation between arsenate or arsenite and Zr complex of LDA. Adsorption isotherm data could be well interpreted by Langmuir equation for As(V) at pH 4 and As(III) at pH 9 with a binding constant 227.93 and 270.47 dm3 mol(-1) and capacity constant 0.656 and 1.1843 mmol g(-1), respectively. Regeneration of the resin was carried out for As(V) using 1 M NaOH. Six adsorption/desorption cycles were performed without significant decrease in the uptake performance. Column adsorption studies showed that the adsorption of As(V) is more favorable compared to As(III), due to the faster kinetics of As(V) compared to As(III). Influence of the coexisting ions on the adsorption of As(V) and As(III) was studied. The applicability of the method for practical water samples was studied.  相似文献   

2.
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Qmax) for As(V) of 5923 μg g?1, approximately ten times greater than that of the untreated BC (552.0 μg g?1). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.  相似文献   

3.
Dissolved organic matter (DOM) affects arsenite [As(III)] toxicity by altering its sorption equilibrium at the cell wall interface. A better understanding of such mechanism is of great importance to assess As(III) ecotoxicity in aquatic systems. Batch experiments were conducted to study the effects of DOM on the regulation of As(III) sorption and toxicity in the diatom Navicula sp. The influence of humic acid (HA) on As(III) toxicity was assessed by measuring algal growth, chlorophyll a, and reactive oxygen species (ROS), whereas As(III) mobility across the cell wall was estimated by determining the concentration of intracellular, cell-wall-bound, and free As(III) ions in cell media. Results showed that the effects of HA on arsenite toxicity varied depending on various combinations of As(III)-HA concentrations. EC50 had an approximate threefold increase from 8.32 (HA-free control) to 22.39 μM (at 20 mg L?1 HA) when Navicula sp. was exposed to 1.0–100.0 μM of As(III), compared to an overall low complexation ratio of HA-As(III) in a range of 0.91–6.00 %. The cell wall-bound and intracellular arsenic content decreased by 19.8 and 20.3 %, respectively, despite the lower arsenite complexation (2.10?±?0.16 % of the total As). Meanwhile, intracellular ROS was decreased by 12.6 % in response to 10.0 μM As(III) and 10 mg L?1 HA vs. the HA-free control. The significant contrast indicated that complexation alone could not explain the HA-induced reduction in arsenite toxicity and other factors including HA–cell surface interactions may come into play. Isotherms describing adsorption of HA to the Navicula sp. cells combined with morphological data by scanning electron microscopy revealed a protective HA floccule coating on the cell walls. Additional Fourier transform infrared spectroscopic data suggested the involvement of carboxylic groups during the adsorption of both HA and As(III) on the Navicula sp. cell surface. Collective data from this study suggest that cell wall-bound HA can moderate As(III) toxicity through the formation of a protective floccule coating occupying As(III) sorption sites and decreased effective functional groups capable of binding As(III). Our findings imply that As(III) toxicity can be alleviated due to the increased hindrance to cellular internalization of As(III) in the presence of naturally abundant DOM in water.  相似文献   

4.
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.  相似文献   

5.
Evaluating a drinking-water waste by-product as a novel sorbent for arsenic   总被引:3,自引:0,他引:3  
Makris KC  Sarkar D  Datta R 《Chemosphere》2006,64(5):730-741
Arsenic (As) carcinogenicity to humans and other living organisms has promulgated extensive research on As treatment technologies with varying levels of success; generally, the most efficient methods come with a significantly higher cost burden and they usually perform better in removing As(V) than As(III) from solution. In the reported study, a novel sorbent, a waste by-product of the drinking-water treatment process, namely, drinking-water treatment residuals (WTRs) were evaluated for their ability to adsorb both As(V) and As(III). Drinking-WTRs can be obtained free-of-charge from drinking-water treatment plants, and they have been successfully used to reduce soluble phosphorus (P) concentrations in poorly P-sorbing soils. Phosphate and arsenate molecules have the same tetrahedral geometry, and they chemically behave in a similar manner. We hypothesized that the WTRs would be effective sorbents for both As(V) and As(III) species. Two WTRs (one Fe- and one Al-based) were used in batch experiments to optimize the maximum As(V) and As(III) sorption capacities, utilizing the effects of solid:solution ratios and reaction kinetics. Results showed that both WTRs exhibited high affinities for soluble As(V) and As(III), exhibiting Freundlich type adsorption with no obvious plateau after 2-d of reaction (15000 mg kg-1). The Al-WTR was highly effective in removing both As(V) and As(III), although As(III) removal was much slower. The Fe-WTR showed greater affinity for As(III) than for As(V) and reached As(III) sorption capacity levels similar to those obtained with the Al-WTR-As(V) system (15000 mg kg-1). Arsenic sorption kinetics were biphasic, similar to what has been observed with P sorption by the WTRs. Minimal (<3%) desorption of sorbed As(III) and As(V) was observed, using phosphate as the desorbing ligand. Dissolved Fe2+ concentrations measured during As(III) sorption were significantly correlated (r2=0.74, p<0.005) with the amount of As(III) sorbed by the Fe-WTR. Lack of correlation between Fe2+ in solution and sorbed As(V) (r2=0.2) suggests reductive dissolution of the Fe-WTR mediating As(III) sorption. Results show promising potential for the WTRs in irreversibly retaining As(V) and As(III) that should be further tested in field settings.  相似文献   

6.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

7.
Water treatment residuals (WTRs) produced in large quantities during deironing and demanganization of infiltration water, due to high content of iron and manganese oxides, exhibit excellent sorptive properties toward arsenate and arsenite. Nonetheless, since they consist of microparticles, their practical use as an adsorbent is limited by difficulties with separation from treated solutions. The aim of this study was entrapment of chemically pretreated WTR into calcium alginate polymer and examination of sorptive properties of the obtained composite sorbent toward As(III) and As(V). Different products were formed varying in WTR content as well as in density of alginate matrix. In order to determine the key parameters of the adsorption process, both equilibrium and kinetic studies were conducted. The best properties were exhibited by a sorbent containing 5 % residuals, formed in alginate solution with a concentration of 1 %. In slightly acidic conditions (pH 4.5), its maximum sorption capacity was 3.4 and 2.9 mg g?1 for As(III) and As(V), respectively. At neutral pH, the adsorption effectiveness decreased to 3.3 mg As g?1 for arsenites and to 0.7 mg As g?1 for arsenates. The presence of carboxylic groups in polymer chains impeded in neutral conditions the diffusion of anions into sorbent beads; therefore, the main rate-limiting step of the adsorption, mainly in the case of arsenates, was intraparticle diffusion. The optimal condition for simultaneous removal of arsenates and arsenites from water by means of the obtained composite sorbent is slightly acidic pH, ensuring similar adsorption effectiveness for both arsenic species.  相似文献   

8.
Haron MJ  Wan Yunus WM  Yong NL  Tokunaga S 《Chemosphere》1999,39(14):2459-2466
Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.  相似文献   

9.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

10.
The aim of this investigation was to obtain the hybrid material precursor to the naturally and abundantly available sericite, a mica-based clay; the materials were further employed in the remediation of arsenic from aqueous solutions. The study was intended to provide a cost-effective and environmentally benign treatment technology. The hybrid organo-modified sericite was obtained using hexadecyltrimethylammonium bromide (HDTMA) and alkyldimethylbenzylammonium chloride (AMBA) organic surfactants by introducing regulated doses of HDTMA or AMBA. The materials were characterized using infrared and X-ray diffraction analytical data, whereas the surface morphology was discussed by taking its SEM images. These materials were employed to assess the pre-concentration and speciation of As(III) and As(V) from aqueous solutions. The batch reactor data showed that increasing the sorptive concentration (from 1.0 to 15.0 mg/L) and pH (i.e., pH 2.0 to 10.0) caused the percent uptake of As(III) and As(V) to decrease significantly. The kinetic data showed that a sharp initial uptake of arsenic reached its equilibrium state within about 50 min of contact time, and the sorption kinetics followed a pseudo-second-order rate law both for As(III) and As(V) sorption. A 1,000 times increase in the background electrolyte concentration, i.e., NaNO3, caused a significant decrease in As(III) removal, whereas As(V) was almost unaffected, which inferred that As(III) was adsorbed, mainly by the van der Waals or even by the electrostatic attraction, whereas As(V) was adsorbed chemically and formed “inner-sphere” complexes at the solid/solution interface. The equilibrium state modeling studies indicated that the sorption data fitted well the Freundlich and Langmuir adsorption isotherms. Henceforth, the removal capacity was calculated under these equilibrium conditions. It was noted that organo-modified sericite possessed a significantly higher removal capacity compared to its virgin sericite. Between these two organo-modified sericite, the HDTMA-modified sericite possessed a higher removal capacity compared to the AMBA-modified sericite.  相似文献   

11.
Equilibrium studies for the sorption of lead from effluents using chitosan   总被引:2,自引:0,他引:2  
Ng JC  Cheung WH  McKay G 《Chemosphere》2003,52(6):1021-1030
The sorption of lead ions from aqueous solution onto chitosan has been studied. Equilibrium studies have been carried out to determine the capacity of chitosan for lead ions. The effects of solution pH and chitosan particle size on the sorption capacity have been studied.The experimental data were analyzed using three equilibrium isotherm correlations, namely, Langmuir, Freundlich and Redlich-Peterson equations. The linear correlation coefficients were determined for each isotherm and the Freundlich provided the best fit. In addition, error functions have been used to determine the alternative single component equilibrium isotherm parameters by non-linear regression due to the inherent bias in using the correlation coefficient from the linearization. This technique enables the "best fit" isotherm parameters to be used in the equilibrium equations for the sorption of lead ions on chitosan within the limits and assumptions of the various error analysis methods.  相似文献   

12.
To test the feasibility of the reuse of iron-rich sludge (IRS) produced from a coal mine drainage treatment plant for removing As(III) and As(V) from aqueous solutions, we investigated various parameters, such as contact time, pH, initial As concentration, and competing ions, based on the IRS characterization. The IRS consisted of goethite and calcite, and had large surface area and small particles. According to energy dispersive X-ray spectroscopy mapping results, As was mainly removed by adsorption onto iron oxides. The adsorption kinetic studies showed that nearly 70 % adsorption of As was achieved within 1 h, and the pseudo-second-order model well explained As sorption on the IRS. The adsorption isotherm results agreed with the Freundlich isotherm model, and the maximum adsorption capacities for As(III) and As(V) were 66.9 and 21.5 mg/g, respectively, at 293 K. In addition, the adsorption showed the endothermic character. At high pH or in the presence of phosphate, the adsorption of As was decreased. When the desorption experiment was conducted to reuse the IRS, 85 % As was desorbed with 1.0 N NaOH. In the column experiment, adsorbed As in real acid mine drainage was 43 % of the maximum adsorbed amount of As in the batch test. These results suggested that the IRS is an effective adsorbent for As and can be effectively applied for the removal of As in water and wastewater.  相似文献   

13.
This study evaluates the behavior of coconut charcoal (AC) to adsorb Cr(VI), As(III), and Ni(II) in mono- and multicomponent (binary and ternary) systems. Batch experiments were carried out for mono- and multicomponent systems with varying metal ion concentrations to investigate the competitive adsorption characteristics. The adsorption kinetics followed the mechanism of the pseudo-second-order equation in both single and binary systems, indicating chemical sorption as the rate-limiting step of adsorption mechanism. Equilibrium studies showed that the adsorption of Cr(VI), As(III), and Ni(II) followed the Langmuir model and maximum adsorption capacities were found to be 5.257, 0.042, and 1.748 mg/g, respectively. In multicomponent system, As(III) and Ni(II) adsorption competed intensely, while Cr(VI) adsorption was much less affected by competition than As(III) and Ni(II). With the presence of Cr(VI), the adsorption capacities of As(III) and Ni(II) on AC were higher than those in single system and the metal sorption followed the order of Ni(II)?>?As(III)?>?Cr(VI). The results from the sequential adsorption–desorption cycles showed that AC adsorbent held good desorption and reusability.  相似文献   

14.
模拟酸雨对氧化锰吸附砷(Ⅲ)的解吸行为研究   总被引:1,自引:1,他引:0  
以合成的氧化锰为吸附剂研究了酸雨pH值、酸雨离子强度、解吸时间和解吸次数等因素对模拟酸雨解吸砷(Ⅲ)的影响。实验结果表明:氧化锰对砷(Ⅲ)吸附容量较大,等温平衡吸附量为:48.38 mg/g。模拟酸雨的pH值与离子强度对砷(Ⅲ)的解吸影响不大;解吸反应在90 min后基本达到平衡,平衡解吸量为2.69×10-2mg/g;随解吸次数的增加解吸量变化不大。氧化锰对砷(Ⅲ)的吸附主要是专性的配位吸附,吸附砷(Ⅲ)后难以被模拟酸雨解吸。  相似文献   

15.
When low-cost adsorbents are being used to remove contaminant ions (e.g. arsenate, vanadate, and molybdate) from wastewater, competitive adsorption/desorption are central processes determining their removal efficiency. Competitive adsorption of As, V, and Mo was investigated using equimolar oxyanion concentrations in single, binary, and tertiary combinations in adsorption isotherm and pH envelope studies while desorption of previously adsorbed oxyanions was examined in solutions containing single and binary oxyanion combinations. The low-cost adsorbent materials used were alum water treatment sludge (amorphous hydroxy-Al) and bauxite ore (crystalline Al oxides). Adsorption isotherm and pH envelope studies showed that Mo had only a small effect in decreasing adsorption of As and V but V and As had substantial and similar effects in reducing adsorption of the other. As had a greater effect than V in reducing adsorption of Mo and it was concluded that the affinity of oxyanions for the surfaces of water treatment sludge and bauxite followed the order As > V >> Mo. In 0.3 M NaCl electrolyte, desorption of previously adsorbed oxyanions amounted to 0.3–3.4% for V and As, and 11–20% for Mo. As had approximately four times greater effect than Mo in increasing desorption of V while V had about three times the effect of Mo in increasing desorption of As. Thus, the order of oxyanions in inducing desorption of the other oxyanions (i.e. As on V and As) was the same as that for adsorption selectivity: As > V >> Mo. Water treatment sludge was a more effective adsorbent than bauxite because it had a greater adsorption capacity for all three anions and, in addition, they were held more strongly so desorption in the background electrolyte was proportionately less. It was concluded that at similar molar concentrations, arsenate would tend to reduce adsorption of vanadate as well as displace vanadate already held on adsorbent surfaces while both anions will compete effectively with molybdate. The limiting factor for simultaneous removal of As, V, and Mo from multielement solutions by adsorption will therefore be the removal of Mo.  相似文献   

16.
Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm?1 after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.  相似文献   

17.
Chojnacka K 《Chemosphere》2005,59(3):315-320
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.  相似文献   

18.
以煤矸石为原料,采用碱熔后水热合成法制备X型分子筛并进行XRD、SEM、BET和Zeta电位分析。研究其对水中Co2+、Cu2+、Cd2+和Cr3+4种离子的吸附性能,包括吸附等温线、吸附动力学以及初始金属离子浓度、pH值对吸附性能的影响。所合成的矸石基X型分子筛的BET比表面积为676.02 m2/g,微孔孔容为0.263 cm3/g。吸附实验表明,矸石基X型分子筛能有效去除上述4种离子,同时实现煤矸石的资源化和金属离子的去除。4种离子的平衡吸附量均随初始浓度的增大而增大,相同条件下平衡吸附量的大小顺序为Cd2+>Cr3+>Cu2+>Co2+。准二级动力学模型能很好地描述4种离子的吸附动力行为。Langmuir模型对Co2+、Cu2+和Cd2+吸附的拟合较Freundlich模型高,说明其主要表现为物理吸附过程。4种离子的吸附速率均由液膜扩散和颗粒内扩散共同控制。  相似文献   

19.
Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L−1, concentrations of As (III) and As (V) were reduced from 2 mg L−1 to <5 μg L−1 in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94 ± 1.5 mg g−1 and 119 ± 2.6 mg g−1 at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.  相似文献   

20.
Chiou MS  Li HY 《Chemosphere》2003,50(8):1095-1105
A batch system was applied to study the adsorption of reactive dye (reactive red 189) from aqueous solutions by cross-linked chitosan beads. The ionic cross-linking reagent sodium tripolyphosphate was used to obtain more rigid chitosan beads. To stabilize chitosan in acid solutions, chemical cross-linking reagent epichlorohydrin (ECH), glutaraldehyde and ethylene glycol diglycidyl ether was used and ECH shows a higher adsorption capacity. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms at different particle sizes and isotherm constants were determined. The Langmuir model agrees very well with experimental data and its calculated maximum monolayer adsorption capacity has very large value of 1802-1840 (g/kg) at pH 3.0, 30 degrees C. The kinetics of the adsorption with respect to the initial dye concentration, temperature, pH, ionic strength, and wet/dry beads were investigated. The pseudo-first-order, second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The dynamical data fit well with the second-order kinetic model, except for the dry beads fitting better with the first-order model. The adsorption capacity increases largely with decreasing solution pH or with increasing initial dye concentration. Thermodynamic parameters such as change in free energy (deltaG(0)), enthalpy (deltaH(0)), entropy (deltaS(0)) and activation energy were also determined. The adsorption mechanism is shown to be the electrostatic interactions between the dye and chitosan beads. The desorption data shows that the removal percent of dye RR 189 from the cross-linked chitosan beads is 63% in NaOH solutions at pH 10.0, 30 degrees C. The desorbed chitosan beads can be reused to adsorb the dye and to reach the same capacity as that before desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号