The present study validates the oil-based paint bioremediation potential of Bacillus subtilis NAP1 for ecotoxicological assessment using a three-dimensional multi-species bio-testing model. The model included bioassays to determine phytotoxic effect, cytotoxic effect, and antimicrobial effect of oil-based paint. Additionally, the antioxidant activity of pre- and post-bioremediation samples was also detected to confirm its detoxification. Although, the pre-bioremediation samples of oil-based paint displayed significant toxicity against all the life forms. However, post-bioremediation, the cytotoxic effect against Artemia salina revealed substantial detoxification of oil-based paint with LD50 of 121 μl ml?1 (without glucose) and >?400 μl ml?1 (with glucose). Similarly, the reduction in toxicity against Raphanus raphanistrum seeds germination (%FG?=?98 to 100%) was also evident of successful detoxification under experimental conditions. Moreover, the toxicity against test bacterial strains and fungal strains was completely removed after bioremediation. In addition, the post-bioremediation samples showed reduced antioxidant activities (% scavenging?=?23.5?±?0.35 and 28.9?±?2.7) without and with glucose, respectively. Convincingly, the present multi-species bio-testing model in addition to antioxidant studies could be suggested as a validation tool for bioremediation experiments, especially for middle and low-income countries.
This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. 相似文献
Environmental Science and Pollution Research - Chlorophenols are not only noticed in an effluvium of industries but also can emerge from the water treatment plants for domestic supply which poses a... 相似文献
The release of hospital wastewater into the urban sewer networks contributes to the general contamination of aquatic media by pharmaceutical residues. These residues include bio-accumulative pharmaceuticals that lead to increased risk for ecosystems because they can concentrate in organisms and food chains, and therefore reach toxic levels. In order to assess the ecotoxicological risks linked to this particular category of residues, we have developed a specific method, by combining a theoretical calculation of pollutant concentrations in organisms to estimate Body Residue (BR), and ecotoxicity biomarkers in fish cell lines, enabling the calculation of a Critical Body Residue (CBR). This method finally results in the calculation of a specific risk quotient (Qb = BR/CBR), characterizing the risk linked to this type of pollutant. This method was applied to mitotane, a bio-accumulative pharmaceutical typically found in hospital wastewater, in the framework of an exposure scenario corresponding to the discharge of all the hospital wastewaters into the Rhone River which flows through the city of Lyon, France. This approach leads to risk quotients (Qb and Qbg) much higher than those found with the classical approach, i.e. Q = PEC/PNEC (Predictive Environmental Concentration/Predictive Non Effect Concentration) = 0.0006. This difference in the appreciation of risk is important when using cytotoxicity as the criterion for measuring the toxicity of mitotane (Qb = 0.056) and it is even greater when the criterion used is genotoxicity (Qbg = 6.8). This study must be now consolidated by taking the biomagnification of the pharmaceuticals into consideration. 相似文献
Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network. 相似文献
During August 1978, The Environmental Protection Agency (EPA) conducted a major field study at the Cumberland Steam Plant of the Tennessee Valley Authority. This study, known as the Tennessee Plume Study, was conducted as part of the EPA Sulfur Transport and Transformation in the Environment (STATE) Project. The field experiments included the release and tracking of tetroons from Cumberland during numerous intervals within the period of the study. On 15 August, 10 tetroons were released, traveling distances ranging from less than 25 km to in excess of 200 km. The tetroon position data were compared with three-dimensional (3-D) kinematic trajectory predictions from a 3-D regional-scale dynamic model. The average directional error was 7° where the maximum error was 14° and an error of less than 2° prevailed for 2 trajectories. The average displacement error was 9 % of the observed path of the tetroon, with the maximum being 30% and an error of 3% or less prevailing for 4 trajectories. 相似文献
The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1–25 °C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25 °C to 1 °C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence. 相似文献
The aim of this study was to test if pharmaceuticals could explain observed responses of field collected and transplanted invertebrate species (Hydropsyche exocellata, Echinogammarus longisetosus, and Daphnia magna). The study was performed in the middle and lower course of Llobregat river basin, which is affected by pharmaceuticals and other pollutants coming from sewage treated effluents. Up to 10 different endpoints including enzyme activities related with detoxication mechanisms (i.e. glutathione S transferase, catalase, esterases), the oxidative stress damage marker (lipid peroxidation), and individual responses (mortality, post-exposure feeding rates) were assessed. Biological responses were complemented with a detailed chemical analysis of metals, detergents, pesticides, pharmaceuticals and other general water quality variables to allow identifying causal abiotic factors. Estimated hazard indexes of measured pollutants indicated that pesticides and metals accounted for most of the predicted toxicity (>95%) in the most contaminated site and that the predicted toxicity of pharmaceuticals was marginal (<5%). The three species showed a clear impact across the studied gradient indicated by higher levels of feeding inhibition and of mortality towards lower reaches. Specific responses such as inhibition of cholinesterase activities were closely related to high and presumable toxic levels of diazinon, whereas unspecific responses such as enhanced levels of antioxidant defensive mechanism and of lipid peroxidation levels were associated with most pollutant classes as well as with high and presumable toxic levels of salt and ammonia. These results indicate that pesticides, salinity, ammonia probably had greater effects on the studied species than pharmaceuticals. 相似文献
Effluents are a main source of direct and continuous input of pollutants to the aquatic environment, and can cause ecotoxicological effects at different levels of biological organization. Since gene expression responses represent the primary interaction site between environmental contaminants and biota, they provide essential clues to understand how chemical exposure can affect organismal health. The aim of the present study was to investigate the applicability of a microarray approach for unraveling modes of action of whole effluent toxicity and impact assessment. A chronic toxicity test with common carp (Cyprinus carpio) was conducted where fish were exposed to a control and 100% effluent for 21 days under flow-through conditions. Microarray analysis revealed that effluent treatment mainly affected molecular pathways associated with the energy balance of the fish, including changes in carbohydrate and lipid metabolism, as well as digestive enzyme activity. These gene expression responses were in clear agreement with, and provided additional mechanistic information on various cellular and higher level effects observed for the same effluent. Our results demonstrate the benefit of toxicogenomic tools in a “systems toxicology” approach, involving the integration of adverse effects of chemicals and stressors across multiple levels of biological complexity. 相似文献
Substance Flow Analysis (SFA) is an important instrument that allows for the undertaking of environmental management for a specific contaminant. 'Control Analysis' is a tool that assesses the effect on a target flow of changes in flows forming part of a control basis set. The purpose of the present study was to perform a modeling of the annual PCDD/F flows in Tarragona Province and to apply the model for human health risk assessment. The validation of the model has been evaluated by comparing estimated fluxes with experimental values. Eleven subsystems, as well as a set of 88 flows of the system in Tarragona Province were considered. The total PCDD/F accumulation in Tarragona Province was between 62.6 and 159.5 g I-TEQ/y. Accumulation in sediments (27.9-74.6 g I-TEQ/y) and soils (35.0-80.8 g I-TEQ/y) are the two principal modes of deposition. Estimated flow in human adipose tissue means a mean intake of PCDD/F (via ingestion and inhalation) of 243 pg I-TEQ/person/day. The food chain pathway accounts for 99% of the total daily intake. As a result of the simulation, a 100% decrease in industrial emissions would cause a 1.7% reduction in the PCDD/F accumulation in humans. In turn, a 100% reduction of PCDD/Fs in the industrial waste waters would cause only an insignificant 0.1% decrease in the accumulation of PCDD/Fs in humans. 相似文献
Moth repellent agents are considered major contributors to indoor air pollution. In this study, the chemical contamination of clothes due to their direct or indirect exposure to moth repellent agents such as p-dichlorobenzene, naphthalene and camphor were investigated. Cotton cloths were used as clothing simulant. They were analyzed using ultrasonic extraction followed by GC-MS analysis. Extrapolated results indicate that a regular cotton shirt indirectly exposed to these chemicals in a storage cabinet can contain up to 7, 3 and 7.5mg of p-dichlorobenzene, naphthalene and camphor, respectively, even after one-hour of airing. Passive sorptive sampling using polydimethylsiloxane-coated stir-bars and ultrasonic extraction followed by GC-MS analysis was used to monitor the concentration distribution in a wardrobe. 相似文献
Environmental Science and Pollution Research - Atmospheric contamination by heavy metal(loid)s is a widespread global issue. Recent studies have shown foliar pathway of heavy metal(loid) uptake by... 相似文献
The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites. 相似文献
Measurements of CFCl3 (F-11) and CF2Cl2 (F-12) are reviewed and analyzed. Observations of temporal and spatial distribution are not yet sufficient to allow precise estimations of the atmospheric lifetimes of F-11 and F-12. The importance of a finite tropospheric lifetime, in regard to future predictions of F-11 and F-12, is emphasized.The lifetime of F-11 may be relatively short, a 10-y lifetime is not ruled out by present analysis. Such a sink would imply the future F-11 level may only be double the present level if production is held constant at 1975 rate. There are larger uncertainties in the estimate of F-12 lifetimes because of fewer data and uncertainty in the release rate data. It is argued that a 10–20 y lifetime for F-12 is not ruled out by observational data. 相似文献
Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. 相似文献