共查询到20条相似文献,搜索用时 15 毫秒
1.
Yanowitz J 《Journal of the Air & Waste Management Association (1995)》2003,53(10):1241-1247
Certification testing of locomotive diesel engines is conducted by testing the locomotive in a series of steady-state conditions, or notches. The aim of this work was to determine whether notch changes, which are made on the order of twice per minute during normal locomotive operation, significantly affect emission rates. Particulate matter (PM) measurements recorded by others over 5, 15, and 30 min immediately at notch change were analyzed. By assuming that PM emissions during steady-state conditions were constant, it was possible to determine the amount of PM emitted because of notch change. Certification line-haul and switching duty cycles were modified to include a representative number of notch changes. The results of these calculations suggest that in test cycles in which a representative number of notch changes were included, approximately 40% of PM emissions occurred because of notch changes. 相似文献
2.
3.
Chiang Hung-Lung Huang Yao-Sheng 《Atmospheric environment (Oxford, England : 1994)》2009,43(26):4014-4022
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. 相似文献
4.
Julia Gerharz Michael H.K. Bendels Doris Klingelhöfer David A. Groneberg Ruth Mueller 《Journal of the Air & Waste Management Association (1995)》2018,68(6):608-615
Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM10, PM2.5, and PM1), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic.Implications: Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L?1), mass concentration (µg m?3), and dust mass fractions shown as PM10, PM2.5, and PM1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system. 相似文献
5.
Mevlut Furkan Mol Mengfan Li 《Journal of the Air & Waste Management Association (1995)》2020,70(8):795-809
ABSTRACT
This study models emissions quantities and neighboring exposure concentrations of six airborne pollutants, including PM10, PM2.5, crystalline silica, arsenic, uranium, and barium, which resulted from the disposal of Marcellus shale drill cuttings waste during the 2011–2017 period. Using these predicted exposures, this study evaluates current setback distances required in Pennsylvania from waste facilities. For potential residents living at the perimeter of the current setback distance, 274 m (900 ft), a waste disposal rate of 612.4 metric tons per day at landfills (the 99th percentile in record) does not result in exceedances of the exposure limits for any of the six investigated pollutants. However, the current setback distance can result in exceedance with respect to the 24-hr daily concentration standards for PM10 and PM2.5 established in the National Air Ambient Quality Standards (NAAQS), if daily waste disposal rate surpasses 900 metric tons per day. Dry depositions of barium-containing and uranium-containing particulate matter should not be a danger to public health based on these results. To investigate the air quality impacts of waste transportation and the potential for reductions, this article describes an optimization of landfill locations in Pennsylvania indicating the potential benefits in reduced environmental health hazard level possible by decreasing the distance traveled by waste disposal trucks. This strategy could reduce annual emissions of PM10 and PM2.5 by a mean of 64% and reduce the expected number of annual fatal accidents by nearly half, and should be considered a potential risk management goal in the long run. Therefore, policy to limit or encourage reduction of distances traveled by waste removal trucks and manage setback distances as a function of delivered waste quantities is merited. 相似文献
6.
Travis Ancelet Perry K. Davy William J. Trompetter Andreas Markwitz David C. Weatherburn 《Journal of the Air & Waste Management Association (1995)》2014,64(5):501-508
Particulate matter (PM) sources at four different monitoring sites in Alexandra, New Zealand, were investigated on an hourly timescale. Three of the sites were located on a horizontal transect, upwind, central, and downwind of the general katabatic flow pathway. The fourth monitoring site was located at the central site, but at a height of 26 m, using a knuckleboom, when wind conditions permitted. Average hourly PM10 (PM with an aerodynamic diameter <10 μm) concentrations in Alexandra showed slightly different diurnal profiles depending on the sampling site location. Each location did, however, feature a large evening peak and smaller morning peak in PM10 concentrations. The central site in Alexandra experienced the highest PM10 concentrations as a result of PM transport along a number of katabatic flow pathways. A significant difference in PM10 concentrations between the central and elevated sites indicated that a shallow inversion layer formed below the elevated site, limiting the vertical dispersion of pollutants. Four PM10 sources were identified at each of the sites: biomass combustion, vehicles, crustal matter, and marine aerosol. Biomass combustion was identified as the most significant source of PM10, contributing up to 91% of the measured PM10. Plots of the average hourly source contributions to each site revealed that biomass combustion was responsible for both the evening and morning peaks in PM10 concentrations observed at each of the sites, suggesting that Alexandra residents were relighting their fires when they rose in the morning. The identification of PM sources on an hourly timescale can have significant implications for air quality management.
Implications: Monitoring the sources of PM10 on an hourly timescale at multiple sites within an airshed provides extremely useful information for air quality management. Sources responsible for observed peaks in measured diurnal PM10 concentration profiles can be easily identified and targeted for reduction. Also, hourly PM10 sampling can provide crucial information on the role meteorology plays in the development of elevated PM10 concentrations. 相似文献
7.
8.
Modeling exposure to particulate matter 总被引:2,自引:0,他引:2
Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population. 相似文献
9.
McCune Frédéric Samson-Robert Olivier Rondeau Sabrina Chagnon Madeleine Fournier Valérie 《Environmental science and pollution research international》2021,28(14):17573-17586
Environmental Science and Pollution Research - Water is essential for honey bees (Apis mellifera L.), but contaminated sources of water in agricultural environments represent a risk of exposure to... 相似文献
10.
As organic matter produced in the euphotic zone of the ocean sinks through the mesopelagic zone, its composition changes from one that is easily characterized by standard chromatographic techniques to one that is not. The material not identified at the molecular level is called "uncharacterized". Several processes account for this transformation of organic matter: aggregation/disaggregation of particles resulting in incorporation of older and more degraded material; recombination of organic compounds into geomacromolecules; and selective preservation of specific biomacromolecules. Furthermore, microbial activities may introduce new cell wall or other biomass material that is not easily characterized, or they may produce such material as a metabolic product. In addition, black carbon produced by combustion processes may compose a fraction of the uncharacterized organic matter, as it is not analyzed in standard biochemical techniques. Despite these poorly-defined compositional changes that hinder chemical identification, the vast majority of organic matter in sinking particles remains accessible to and is ultimately remineralized by marine microbes. 相似文献
11.
Dungan RS Papiernik S Yates SR 《Journal of environmental science and health. Part. B》2005,40(2):355-362
Atmospheric emission of the soil fumigant 1,3-dichloropropene (1,3-D) has been associated with the deterioration of air quality in certain fumigation areas. To minimize the environmental impacts of 1,3-D, feasible and cost-effective control strategies are in need of investigation. One approach to reduce emissions is to enhance the surface layer of a soil to degrade 1,3-D. A field study was conducted to determine the effectiveness of composted steer manure (SM) and composted chicken manure (CKM) to reduce 1,3-D emissions. SM or CKM were applied to the top 5-cm soil layer at a rate of 3.3 or 6.5 kg m(-2). An emulsified formulation of 1,3-D was applied through drip tape at 130.6 kg ha(-1) into raised beds. The drip tape was placed in the center of each bed (102 cm wide) and 15 cm below the surface. Passive flux chambers were used to measure the loss of 1,3-D for 170 h after fumigant application. Results indicated that the cumulative loss of 1,3-D was about 48% and 28% lower in SM- and CKM-amended beds, respectively, than in the unamended beds. Overall, both isomers of 1,3-D behaved similarly in all treatments. The cumulative loss of 1,3-D, however, was not significantly different between the two manure application rates for either SM or CKM. The results of this study demonstrate the feasibility of using composted animal manures to control 1,3-D emissions. 相似文献
12.
Jinsart W Kaewmanee C Inoue M Hara K Hasegawa S Karita K Tamura K Yano E 《Journal of the Air & Waste Management Association (1995)》2012,62(1):64-71
The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles. 相似文献
13.
Betha R Balasubramanian R 《Journal of the Air & Waste Management Association (1995)》2011,61(10):1063-1069
Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. 相似文献
14.
Assessment of human exposure to ambient particulate matter 总被引:8,自引:0,他引:8
Mage D Wilson W Hasselblad V Grant L 《Journal of the Air & Waste Management Association (1995)》1999,49(11):1280-1291
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM). This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures. 相似文献
15.
Broich AV Gerharz LE Klemm O 《Environmental science and pollution research international》2011,19(7):2959-2972
Background
Continuous monitoring of air quality is implemented by government institutions at fixed ambient sites. However, the correlation between fixed site measurements and exposure of individual persons to air contaminants is likely to be weak.Materials and methods
We measured particulate matter both outdoors and indoors by following the spatial movement of individuals. Sixteen test persons took part and carried a measurement backpack for a 24-h period. The backpack was comprised of a Grimm Aerosol Spectrometer model 1.109, a GPS device, and a video camera for tracking of human behavior. The spectrometer provided information about particle numbers and mass in 32-size classes with a high temporal resolution of 6 s.Results
The personal exposure of individuals during 24 h could significantly exceed the outdoor particulate matter (PM)10 concentrations measured at the fixed sites. The average 24-h exposure of all test persons for PM10 varied from 27 to 322 ??g m?3. Environmental tobacco smoke and cooking emissions were among the main indoor sources for PM. The amount of particulate matter a test person was exposed to was highly dependent on the spatial behavior and the surrounding microenvironment conditions.Discussion
Large-scale experiments including personal measurements might help to improve modeling approaches to approximate the actual exposure on a statistically sound basis. 相似文献16.
Heber AJ Lim TT Ni JQ Tao PC Schmidt AM Koziel JA Hoff SJ Jacobson LD Zhang Y Baughman GB 《Journal of the Air & Waste Management Association (1995)》2006,56(12):1642-1648
Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity. 相似文献
17.
Célia Alves Ana I. Calvo Liliana Marques Amaya Castro Teresa Nunes Esther Coz Roberto Fraile 《Environmental science and pollution research international》2014,21(21):12390-12402
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m?3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m?3 were registered in the gymnasium. The chalk dust contributed to CO3 2? concentrations of 32?±?9.4 μg m?3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m?3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7?±?0.89 μg m?3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm?3 and 28 cm?3, respectively. 相似文献
18.
Behroz Abdoli Seyed Ali MirHassani Farnaz Hooshmand 《Environmental science and pollution research international》2017,24(27):21610-21624
Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances. 相似文献
19.
Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy. 相似文献
20.
Malvadkar SB Smith D McGurl GV 《Journal of the Air & Waste Management Association (1995)》2004,54(6):741-749
Supply curves were prepared for coal-fired power plants in the contiguous United States switching to Wyoming's Powder River Basin (PRB) low-sulfur coal. Up to 625 plants, representing approximately 44% of the nameplate capacity of all coal-fired plants, could switch. If all switched, more than dollars 8.8 billion additional capital would be required and the cost of electricity would increase by up to dollars 5.9 billion per year, depending on levels of plant derating. Coal switching would result in sulfur dioxide (SO2) emissions reduction of 4.5 million t/yr. Increase in cost of electricity would be in the range of 0.31-0.73 cents per kilowatt-hour. Average cost of S emissions reduction could be as high as dollars 1298 per t of SO2. Up to 367 plants, or 59% of selected plants with 32% of 44% nameplate capacity, could have marginal cost in excess of dollars 1000 per t of SO2. Up to 73 plants would appear to benefit from both a lowering of the annual cost and a lowering of SO2 emissions by switching to the PRB coal. 相似文献