首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, cadmium and lead concentrations were compared in barnacles, ghost shrimps, polychaetes, bivalves, and sediment from ten different locations along the intertidal zone of the Persian Gulf and the Gulf of Oman. The results revealed significant differences in the heavy metal concentrations between the organisms with barnacles showing, by far, the highest metal concentrations. The bioaccumulation factor of Cd in different animals follows this pattern with barnacles?>?bivalves?>?polychaetes?>?ghost shrimps, while the pattern for Pb was barnacles?>?polychaetes?>?bivalves?>?ghost shrimps. In most of the stations, sediments showed the lowest lead and cadmium concentrations. Therefore, it is concluded that barnacles with Pb concentrations between 0.17 and 2,016.1 μg/g and Cd concentrations ranging from 0.4 to 147.1 μg/g are the best organisms to be employed in monitoring programs designed to assess pollution with bioavailable metals in the Persian Gulf and the Gulf of Oman.  相似文献   

2.
Environmental Science and Pollution Research - Chemical contaminants are released from mining, domestic and industrial effluents into an aquatic environment. Sediments (n?=?10) were...  相似文献   

3.
Environmental Science and Pollution Research - Microplastics (MPs) are one of the most significant solid waste pollutants in the marine environment and accumulate in sediments around worldwide. In...  相似文献   

4.
The Persian Gulf is a semi-enclosed marine system surrounded by eight countries, many of which are experiencing substantial development. It is also a major center for the oil industry. The increasing array of anthropogenic disturbances may have substantial negative impacts on marine ecosystems, but this has received little attention until recently. We review the available literature on the Gulfs marine environment and detail our recent experience in the United Arab Emirates (U.A.E.) to evaluate the role of anthropogenic disturbance in this marine ecosystem. Extensive coastal development may now be the single most important anthropogenic stressor. We offer suggestions for how to build awareness of environmental risks of current practices, enhance regional capacity for coastal management, and build cooperative management of this important, shared marine system. An excellent opportunity exists for one or more of the bordering countries to initiate a bold and effective, long-term, international collaboration in environmental management for the Gulf.  相似文献   

5.
6.

Contamination of aquatic systems mainly by urbanization and poor sanitation, deficient or lack of wastewater treatments, dumping of solid residues, and run off has led to the presence of particles, including manmade polymers, in tissues of many marine and freshwater species. In this study, the prevalence of microplastics (MPs) in freshwater fish from farmed and natural sources was investigated. Oreochromis niloticus from aquaculture farms in the Huila region in Colombia, and two local species (Prochilodus magdalenae and Pimelodus grosskopfii), naturally present in surface waters were sampled. Of the particles identified, fragments were the predominant type in the three tissue types (stomach, gill, and flesh) derived from farmed and natural fishes. MicroFT-IR spectroscopy was conducted on 208 randomly selected samples, with 22% of particles identified as MPs based on spectra with a match rate ≥ 70%. A total of 53% of identified particles corresponded to cellophane/cellulose, the most abundant particle found in all fish. Not all fish contained MPs: 44% of Oreochromis farmed fish contained MPs, while 75% of natural source fish contained MPs in any of its tissues. Overall, polyethylene terephthalate (PET), polyester (PES), and polyethylene (PE) were the prevalent MPs found in the freshwater fish. A broader variety of polymer types was observed in farmed fish. The edible flesh part of fish presented the lower prevalence of MPs compared to gill and stomach (gut), with gut displaying a higher frequency and diversity of MPs. This preliminary study suggests that the incidence and type of MPs varies in farmed verses natural fish sources as well as across different tissue types, with significantly less detected within the edible flesh tissues compared with stomach and gill tissues.

  相似文献   

7.
Environmental Science and Pollution Research - The correct equations are presented below.  相似文献   

8.
Trace element contamination of Norwegian Lake sediments   总被引:7,自引:0,他引:7  
Rognerud S  Fjeld E 《Ambio》2001,30(1):11-19
Concentrations of Sb, Hg, Bi, Cd, Mo, As, Co, Ni, Cr, Cu, V, Pb and Zn in surface and preindustrial sediments from 210 lakes in Norway were used for studying modern atmospheric depositions of these elements. Surface sediments had considerably higher concentrations of Sb, Hg, Bi, Cd, As, Pb than preindustrial sediments. The differences decreased with latitude and altitude. A multivariate analysis including the trace elements and the major constituents (organic matter, Si, Al, Fe and Mn) of surface sediments suggested the following relationships: Sb, Hg, Bi, As, and Pb formed a group with strong associations to organic matter. Ni, Cr and Cu formed a second group, weakly associated to the inorganic sediment fraction (Si and Al). Zn and Cd formed a third group with weak associations to organic matter. Co was associated to Mn, whereas Mo and V showed no important covariations with any other trace elements or major components.  相似文献   

9.
Background, Aims and Scope Despite the large number of studies on the forms of sulfur in marine deposits, investigations on sulfur organic compounds are still rare. It is known that the processes leading to formation of intermediate and final sulfur compounds (including organic ones) in modern deposits are the results of microbiological transformation of sulfur containing proteins, as well as the microbiological reduction of sulfate ions. The latter are finally reduced by anaerobic sulfate-reducing bacteria to H2S, HS and S2−; the total sum of these is referred to as ‘hydrogen sulfide’ in chemical oceanography. Further, the formation of reduced sulfur organic derivatives (sulfides and polysulfides) is the result of interaction of the organic substance destruction products with the sulfide ions. In such cases, the main source of organic substances, as well as sulfates for the sulfur reducing processes, is the pore water in the sediments. The choice of the target of our study is based on the fact that the eastern part of the Gulf of Finland water area receives the bulk of the anthropogenic load of the St. Petersburg region. Low vertical intermixing of the water thickness is observed there (thus creating a deficiency of oxygen near the bottom), and the bottom sea current transfers the polluted salty water of the Baltic Sea into the Neva Bay. The whole of the above are the preconditions for the formation of sulfur-bearing organic compounds. A great number of bottom sediment samples for analytical surveys were collected in the Eastern Gulf of Finland during research expeditions in the years of 1997 and 2001. These were screened for structures of sulfur organic microcontaminants, including organic forms of sulfur, using advanced instrumentation and experienced personnel in our two, cooperating laboratories. This work is a part of the research being carried out on organic micro-admixtures present in bottom sediments, and is the summary of our findings on previously unstudied sulfur organic substances there. Materials and Methods A number of sulfur organic compounds present in nineteen bottom sediment samples from the Eastern Gulf of Finland (EGF) were characterized by high performance gas chromatography connected to low and high resolution mass spectrometers (GC/LRMS and GC/HRMS). The structure screening was carried out as compared with literature and library mass spectra, and taking the GC retention times into account. In the cases of an absence of mass spectra not in the literature, interpretation of the most probable structures was performed with the help of high resolution mass-spectrometric data, fragmentation rules for sulfur-bearing organic substances and ICLU simulation of spectra. These data were registered to form a conclusive ‘fingerprint’ for identification and confirmation of the structure of each novel compound found, e.g. by later syntheses of authentic model compounds. The relative contents of sulfur organic compounds were determined from MS response ratios of each compound to 2-fluorine naphthalene (internal standard). Results This paper is a completion of work, which has been published in part as three papers in the European Journal of Mass Spectrometry. As the total study result, 43 sulfur-bearing compounds were characterized. The mass spectra of 20 of them were found in the literature. The most probable structures for the 23 compounds whose mass-spectra were not available in the literature data were proposed. All of those 23 compounds were detected in bottom sediments for the first time, and 5 of them were described as originating from plants or being generated by chemical synthesis products, while the remaining 18 substances were previously unknown. The structures of these were deduced to be most probably the following (in order of their GC retention): dichloromethyl thiylsulfenylchloride, chloromethyl dichloromethyl disulfide, 3,4-dithiacyclohexene, 1,2,4-trithiacycloheptane, 1,2,3-trithiacyclohexane, tetrathiacyclopentane, 3,4,5-trithiacyclohexene, 1,2,4-trithiacyclohexane, cyclopropylhydrotrisulfide, 1,2-dithiane-3-thiol, 1,3-dithiane-2-thiol, bis(trichloromethyl)-tri-sulfide, 1,2,4,5-tetrathiacyclohexane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathia-cyclo-hexane, pentathiacyclohexane, and 1,2,4,6-tetrathiacyclooctane. The highest amounts of sulfur organic compounds were found in the deepest, bottom areas in the open part of the sea, where the salinity was highest, and oxygen deficiency occurred as well. Also, some coastal places with a high solid matter deposition rate had elevated contents of sulfur organic compounds. Discussion From the 43 sulfur organic compounds found, the HRMS data provided the atomic composition of the molecular ions for 16 compounds with a high confidence (see Table 3). The LRMS spectra could be identified with catalogue or literature spectra in 29 cases. The MS information obtained was insufficient in two cases: 1) The obvious molecular ion (at m/z 110) of compound 1 was not visible in LRMS. 2) For compound 43, the HRMS measurement, due to the low intensity (2%) of the molecular ion (m/z 210), could not exclude the presence of 2 oxygen atoms (instead of one sulfur atom) in the molecule. Major fragments, however, of our 43, certainly contained no oxygen atoms according to HRMS. The limited LRMS data in the literature, for an isomer of 43, had m/z values of all fragments different from those of the compound found by us. The retention times (RT) formed one more evidence for identity between compounds in different samples. The use of different non-polar columns in GC and similar, but not identical, temperature programs produced eluted peaks of novel and known compounds in each sample (mixture) in GC/HRMS and GC/LRMS. These gave sets of RTs which were in a very significant linear correlation (measured example R = 0.999866, p = 1.85E-06, N = 5). Therefore, the RTs in the HRMS analysis systems could be converted to values comparable with those from the LRMS device. The RT values, HRMS m/z values, LRMS spectra, and ICLU simulation results for each organic sulfur compound form an identification ‘fingerprint’. The interpretation of these experimental data, with supporting use of fragmentation rules, allow the giving of a provisional name and structure to the ‘suspect’. In this study and in environmental surveys of micropollutants in general, the compounds suspected of anthropogenic or natural origin occur at low levels in complex mixtures. Therefore, no bulk amount of an authentic, pure model substance for the suspect is available quite often. The most probable name and structure from the fingerprint data are very useful in guiding the preparation of the model substance for a conclusive identification. Similarly, the unknown criminal can be identified in advance by forensic science and his fingerprint, DNA, etc. as registered before the arrest. The analogy can be found in the literature and CAS register of organic polysulfides, which in great part consists of the results of sensitive mixture analysis methods. Conclusions Sediment of the Eastern Gulf of Finland is over large areas anaerobic, as indicated by the existence of novel, non-oxygenated sulfur organic microcontaminants. These substances were most abundant in anoxic and saline, deep bottom regions, and, in addition, in one coastal area near industrial discharges. This occurrence, and also the limited information about sulfur organic compounds in scientific literature, is considered evidence for the dominantly natural processes in their formation. Recommendations and Perspectives The importance and necessity of investigating the sulfur organic compounds in the bottom sediments, result from the fact that their presence can be an indicator of stable anaerobic processes. Similarly, the oxygen disappearance (anoxia) in the marine water, due to a high concentration of the sulfate ions and relatively high content of organic matter, is practically always connected with the appearance of hydrogen sulfide and sulfides. The generation of sulfur organic compounds precedes the formation of the new, or expansion of the existing anaerobic (‘hydrogen sulfide’) zones, which lead to such environmental disasters as mass destruction of hydrobionts. Many organic compounds of sulfur, including sulfides and polysulfides, are toxic to the aquatic organisms. Therefore, in addition to the danger of mass wholesale deaths of marine fauna in the bottom sediments region, there exists a probability of secondary pollution of the water thickness as well, due to the entry of those substances from bottom sediments in the water when the environmental conditions are changed (stormy weather, floods, geological activity of the earth’s crust, etc.).  相似文献   

10.
A 5.3 m sediment core and soil samples were taken from Diss Mere and its catchment. The sediment core was dated and Hg analysed on the sediment and soil samples. The Hg record of the sediment core shows that Diss Mere has been contaminated for the past thousand years and the historical trends in sediment contamination are in good agreement with the development of the weaving industry in Diss and hemp cultivation in the region. Mercury contamination in Diss Mere has been significant and reached a peak in the mid-19th century with sediment Hg concentrations over 50 μg g−1. Elevated Hg concentrations were also found in contemporary soils in residential areas with former industrial land use. Although local hemp cultivation and the traditional weaving industry were abandoned a hundred years ago, Hg contamination caused by these activities still exists in the catchment, and affects the lake.  相似文献   

11.
Prange JA  Gaus C  Päpke O  Müller JF 《Chemosphere》2002,46(9-10):1335-1342
Recent findings of elevated PCDDs from an unknown source in the coastal marine environment of Queensland, Australia has instigated further investigations into the distribution of, and environments associated with the PCDD contamination. This study presents data for OCDD concentrations in the coastal, mountainous and inland environment of Queensland. Additionally, full 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) profiles from different land-use types and environments in the coastal region were analysed. Distinct east–west gradients were detected in topsoil collected from various bushland regions with elevated OCDD concentrations confined to the coastal region. However, PCDD/F results from topsoil and river sediments collected in the Queensland coastal region suggest that elevated OCDD concentrations cannot be attributed to any of the environments, land-use or industry types investigated. PCDD/F congener profiles from select samples were remarkably similar to those previously described in marine sediments collected along the entire Queensland coastline. In addition, kaolinite clay samples from Queensland exhibited elevated OCDD concentrations, and PCDD/F profiles in these samples were similar to those detected in kaolinite clays elsewhere. Natural formation processes have been hypothesised as the source of elevated PCDDs in Queensland and other locations, where similar PCDD/F profiles and the general lack of anthropogenic sources are evident. This study presents additional data supporting this hypothesis and provides further information that may assist in the identification of the processes involved in the natural formation of PCDDs.  相似文献   

12.
Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.

  相似文献   

13.
J Aigars 《Chemosphere》2001,45(6-7):827-834
The redox-dependent variations in concentrations of phosphorus at two different accumulation bottom areas were investigated in the Gulf of Riga (Baltic Sea) between December 1993 and January 1995. The sediment samples from nine sampling occasions were analyzed for phosphorus forms and redox potential. The average concentrations of total phosphorus measured in 0-1 cm (65 and 89 micromol P g(-1) for sites G5 and T3, respectively) were among the highest reported from the entire Baltic Sea. Redox-dependent "mobile" phosphorus (MP) contributed more than 50% of total in the uppermost-oxidized centimeter, whereas in reduced layers it was 16-18% throughout the year. The significant differences (ANOVA, P<0.01) among months of inorganic phosphorus (IP) concentration at 0-1 cm were observed at site G5 due to temporary accumulation of mobile phosphorus mediated by redox-dependent bacteria activity during summer. On the contrary no accumulation was observed at T3 probably as a result of low redox potential caused by high accumulation rates and low bioturbation. Although the water column above sediments remained oxic throughout the investigation period, the redox potential at site T3 was close to the redoxcline (i.e., +230 mV) during summer. Further increase of eutrophication might lead to development of anoxic conditions at sediment-water interface and that in turn will result in rapid release of redox-dependent phosphorus stored in surface sediments. The availability of excess phosphorus will further enhance eutrophication in partly phosphorus-limited Gulf of Riga.  相似文献   

14.

Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.
  相似文献   

15.

Background, aim and scope  

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.  相似文献   

16.
A compilation of information about levels of selected persistent organic pollutants, namely polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroetane and its degradation products (DDTs) and hexachlorobenzene (HCB), in Mediterranean sediments, including data published from 1971 to 2005, has been conducted in order to assess their main drivers and pressures in the environment. The application of mapping tools (GIS) and statistical instruments enabled the assessment of geographical and temporal trends. Chemical contamination mainly originates from land-based sources, and decreases significantly when moving off-shore. Contamination hot spots are generally located along the Northern coastline. The data for open sea sediments enabled the establishment of background levels of contamination for the region. A decreasing temporal trend in concentrations was found, more evident in the case of DDTs probably due to a more efficient regulation of this chemical. Finally, some gaps in reliable data were also identified which were related to the lack of information in the southern and eastern parts of the Mediterranean as well as the variety of analytical methodologies used.  相似文献   

17.
Antifouling paint booster biocide contamination in Greek marine sediments   总被引:1,自引:0,他引:1  
Organic booster biocides were recently introduced as alternatives to organotin compounds in antifouling products, after restrictions imposed on the use of tributyltin in 1987. In this study, the concentrations of three biocides commonly used as antifoulants, Irgarol 1051 (2-methylthio-4-tertiary-butylamino-6-cyclopropylamino-s-triazine), dichlofluanid (N-dichlorofluoromethylthio-N',N'-dimethyl-N-phenyl sulphamide) and chlorothalonil (2,4,5,6-tetrachloro isophthalonitrile) were determined in sediments from ports and marinas of Greece. Piraeus (Central port, Mikrolimano and Pasalimani marinas), Thessaloniki (Central port and marina), Patras (Central port and marina), Elefsina, Igoumenitsa, Aktio and Chalkida marinas were chosen as representative study sites for comparison with previous monitoring surveys of biocides in coastal sediments from other European countries. Samples were collected at the end of one boating season (October 1999), as well before and during the 2000 boating season. All the compounds monitored were detected at most of sites and seasonal dependence of biocide concentrations were found, with maxima during the period June-September, while the winter period (December-February) lower values were encountered. The concentrations levels ranged from 3 to 690 ng/g dw (dry weight). Highest levels of the biocides were found in marinas (690, 195 and 165 ng/g dw, for Irgarol, dichlofluanid and chlorothalonil respectively) while in ports lower concentrations were observed. Antifouling paints are implicated as the likely sources of biocides since agricultural applications possibly contributed for chlorothalonil and dichlofluanid inputs in a few sampling sites.  相似文献   

18.
The contribution of fluvial discharge and global fallout of 137Cs and mercury to sedimentation fluxes in Lake Shinji and Lake Nakaumi, Japan, was studied. The fluvial flux through soil erosion accounted for 11 to 27% of accumulated 137Cs in the sediments in the 1950's and 1960's, which were the periods of the most extensive atmospheric input, and for 90 to 100% in the 1990's. The vertical profiles of mercury concentrations in the lake sediments studied showed a maximum between 1959 and 1963, which was originated mostly from the extensive use of mercury-agrochemicals in paddyfields of the watershed in the past. These findings are representative examples of long-term contamination of lake sediments caused by the contaminated ground soil erosion.  相似文献   

19.
Environmental Science and Pollution Research - Here, we report on new data (75 analyses) of plutonium (Pu) isotopes to elucidate activity concentrations, inventories, sources, and their transport...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号