共查询到20条相似文献,搜索用时 0 毫秒
1.
Through short-term exposure (7-d exposure), long-term exposure (16-d exposure) and exposure-recovery (7-d exposure + 9-d recovery), the bioaccumulation and distribution of La and Ce and their effects on growth of wheat seedlings were studied. Addition of La (0.5-25 mg/l) and Ce (0.5-25 mg/l) to the culture medium individually and in combination inhibited primary root elongation, reduced the dry weight of roots and shoots and the content of mineral elements (Ca, Mg, K, Cu, Zn). The damage increased with an increase in the concentrations of La and Ce in culture medium. Relative damage ratio increased with an increase in concentrations of La and Ce in the culture medium and with exposure time. Comparing exposure-recovery groups with long-term exposure groups, primary root lengths, dry weight of roots and shoots and the content of five mineral elements were higher. The accumulation of La and Ce in the seedlings was positively correlated with the concentrations of La and Ce in the culture medium and with exposure time. Bioaccumulation factors of La and Ce in roots were much higher than those of shoots. The uptake rates of La and Ce by the plants were much higher than the translocation rates from roots to shoots. The accumulation and distribution of La and Ce in the seedlings in exposure-recovery groups showed that there was very little excretion through metabolism during the recovery period, but redistribution occurred throughout the whole plant. No apparent selective uptake was found between La and Ce by the plants when they were applied in combination. 相似文献
2.
We have found that rice bran effectively adsorbed chloroform from tap water. The amount of chloroform adsorbed was plotted against the equilibrium concentration of chloroform in solution on a logarithmic scale. A linear relationship was obtained, indicating that the adsorption reaction was a Freundlich type. The removal of chloroform by rice bran was attributed to the uptake into intracellular particles called spherosomes. 相似文献
3.
Costas J. Saitanis Shafiqul M. Bari Kent O. Burkey Dimitris Stamatelopoulos Evgenios Agathokleous 《Environmental science and pollution research international》2014,21(23):13560-13571
The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar?>>?Sufi?≥?Bijoy?≥?Shatabdi?>?Bari-26?≥?Gourab?>?Bari-25?≥?Prodip?≥?Sourav?>>?Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars’ PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding. 相似文献
4.
Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.) 总被引:3,自引:0,他引:3
Two cultivars of winter wheat (Triticum aestivum L.) (Jing 411 and Lovrin 10) were used to investigate arsenate (As) uptake and distribution in plants grown in hydroponic culture and in the soil. Results showed that without As addition, Lovrin 10 had higher biomass than Jing 411 in the soil pot experiment; in the hydroponic experiment Lovrin 10 had similar root biomass to and lower shoot biomass than Jing 411. Increasing P supply from 32 to 161 microM resulted in lower tissue As concentrations, and increasing As supply from 0 to 2,000 microM resulted in lower tissue P concentrations. Increasing P supply tended to increase shoot-to-root ratios of As concentrations, and increasing As supply tended to decrease shoot-to-root ratios of As concentrations. Both cultivars invested more in root production under P deficient conditions than under P sufficient conditions. Lovrin 10 invested more biomass production to roots than Jing 411, which might be partly responsible for higher shoot P and As concentrations and higher shoot-to-root ratios of As concentrations. Moreover, Lovrin 10 allocated less As to roots than Jing 411 and the difference disappeared with decreasing P supply. 相似文献
5.
Mostafa Lamhamdi Ahmed Bakrim Noureddin Bouayad Ahmed Aarab René Lafont 《Environmental science and pollution research international》2013,20(10):7377-7385
Spinach extracts contain powerful natural antioxidants and have been used to improve the response of animal cells to various stress factors. The aim of the present study was to assess the effects of a methanolic extract of spinach (SE) used at two concentrations (21.7 and 217 ppm) on the growth, certain enzymes and antioxidant systems in wheat seedlings under lead stress. When wheat seedlings were grown for 7 days in a solution containing Pb(NO3)2 (3 mM), germination and growth were impaired, while signs of oxidative stress were observed. SE (217 ppm) pretreatment was able to protect seedlings from Pb toxicity by both reducing Pb uptake and Pb-induced oxidative stress. As a consequence, almost normal germination, elongation, biomass and α-amylase activity were restored by SE (217 ppm) pretreatment of wheat seedlings, in spite of the presence of Pb. Our results support the protective role and the antioxidant effect of SE against Pb. These results show an amazing similarity to the effects of SE in animals, which suggests that providing “nutraceuticals” to plants could improve their “health” status. 相似文献
6.
Khan Ali Ahmad Adeel Shahid Azeem Muhammad Iqbal Naeem 《Environmental science and pollution research international》2021,28(37):51632-51641
Environmental Science and Pollution Research - Revival of natural colorants in textile dyeing is one of the important strategies to reduce synthetic chemical-based environmental pollution. The... 相似文献
7.
Growth and yield were reduced but (14)C translocation velocity was not affected by increasing levels of ozone in spring wheat exposed in open top chambers to the following treatments: charcoal filtered air (CF), non-filtered ambient air (NF), or NF with addition of 30 microl litre(-1) ozone, 8 h daily (NFO). Destructive harvests were performed at anthesis and at maturity. Parts of the flag leaf or the second leaf were exposed to (14)CO(2) in small cuvettes for 5 min before, during and after anthesis. The translocation velocity was followed by autoradiography and scintillation counting of the plants frozen and lyophilized at different times after labelling. The label was transported at the same velocity in all the treatments. Ozone induced changes in carbon allocation or partitioning should probably be explained as amounts of carbon transported (mg s(-1)), rather than as transportation velocity (mm s(-1)). The amount translocated may be governed by source conditions under O(3) stress: reduced healthy green biomass and photosynthesis, but perhaps also by impairment of phloem loading because of membrane damage. 相似文献
8.
Phytochelatins (PCs) have been proposed as a potential biomarker for metal toxicity. In this study, cadmium (Cd) toxicity, PCs production and their relationship in wheat under Cd stress were examined using various exogenous organic chelator-buffered nutrient solutions. Single Cd stress produced strong toxic effects, as indicated by decreases of growth parameters, high level of lipid peroxidation in leaf and overproduction of PCs in root. Exogenous organic chelators with proper dose more or less reduced Cd toxicity by increasing growth parameters and decreasing lipid peroxidation in leaves. Of organic chelators (EDTA, DTPA, citric acid, malic acid and oxalic acid), EDTA was the most effective in decreasing Cd toxicity in plants, followed by DTPA and citric acid. Simultaneously, the concentrations of Cd-induced PCs in roots decreased, and the greatest decrease was caused by application of EDTA and DTPA. Linearly positive relationships were observed between Cd toxicity and root PCs concentrations under the influences of organic chelators, particularly EDTA, DTPA and citric acid. Furthermore, present results provide stronger evidence that PCs synthesis in plant cells was related to free Cd ion concentrations, not total Cd, and demonstrate that the levels of PCs production in plants correlated well with toxic effects caused by the bioavailable Cd levels. 相似文献
9.
The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides. 相似文献
10.
Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.) 总被引:1,自引:0,他引:1
Biochemical responses of wheat (Triticum aestivum L.) seedlings stressed by two typical personal care products (PCPs) – triclosan (TCS) and galaxolide (HHCB) were experimentally investigated to assess their ecological risks. The results showed that wheat shoot and root elongation was significantly inhibited by 50–250 mg L−1 TCS and HHCB. Wheat roots were sensitive to TCS, while shoots were sensitive to HHCB. The median effect concentration (EC50) of TCS and HHCB based on the inhibition of their sensitive sites were 147.8 and 143.4 mg L−1, respectively. Moreover, the damage of wheat seedlings treated by low concentration of TCS and HHCB during a long period cannot be neglected. After a 21-d exposure, 0.2–3.0 mg L−1 TCS and HHCB treatment caused the damage to the accumulation of chlorophyll (CHL), the synthesis of soluble protein (SP), and the activity of peroxidase (POD) and superoxide dismutases (SOD) in different degree. However, different changing trends of these physiological indexes treated by different PCPs were observed after 7-d to 14-d exposures, especially the activity of POD and SOD. The activity of POD and SOD in wheat leaves and roots decreased with an increase in the concentration of TCS and the exposure time. However, the enzyme activities in wheat leaves treated by 0.2–3.0 mg L−1 HHCB increased after a 14-d exposure, and with the prolongation of exposure time, the enzyme activities significantly decreased. The variations in these physiological indexes of wheat could be considered as good biomarkers of serious stress by TCS and HHCB in the environment. 相似文献
11.
Kant PC Bhadraray S Purakayastha TJ Jain V Pal M Datta SC 《Environmental pollution (Barking, Essex : 1987)》2007,147(1):273-281
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration. 相似文献
12.
Ghasemzadeh Nasim Iranbakhsh Alireza Oraghi-Ardebili Zahra Saadatmand Sara Jahanbakhsh-Godehkahriz Sodabeh 《Environmental science and pollution research international》2022,29(24):35897-35907
Environmental Science and Pollution Research - Cold plasma (CP) application has increasing interest due to its environmental-friendly, high efficient, and low cost aspects to mitigate deletion... 相似文献
13.
Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd. 相似文献
14.
Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.)
To evaluate the environmental risk of irrigating crops with treated wastewater, an experiment was conducted using two growth chambers, each offering a different vapour pressure deficit (VPD) for high and low transpiration rates (TR), respectively. One of the two sets of 24 pots planted with 6 week old wheat (Triticum aestivum L.), was placed in each growth chamber, and irrigated in triplicates for 20 days with 8 Zn and Cu solutions (0 and 25 mg Zn/L combined with 0, 5, 15 and 30 mg Cu/L). Water losses from planted and non-planted pots served to measure evapo-transpiration and evaporation, respectively. Pots were monitored for Cu and Zn uptake by collecting three plants (shoot and grain)/pots after 0, 10 and 20 days, and roots in each pot after 20 days, and analyzing these plant parts for dry mass, and Cu and Zn levels. Transpiration rate was not affected by any Cu/Zn treatment, but Cu and Zn uptake increase with the time, irrigation solution level and higher TR, with the roots retaining most Cu and Zn, compared to the shoot followed by the grain. For the shoot and grain, Cu had a significant synergetic effect on Zn uptake, when Zn had slight but insignificant antagonistic effects on Cu uptake. For the roots, Cu and Zn had significant synergetic effect on each other. Regression equations obtained from the data indicate that Cu and Zn levels normally found in treated wastewater (0.08 mg/L) are 300 times lower than those used for the most concentrated experimental solutions (30 and 25 mg/L, respectively) and may, on a long term basis, be beneficial rather than toxic to wheat plants and do not acidify soil pH. 相似文献
15.
Wang X Zheng Q Yao F Chen Z Feng Z Manning WJ 《Environmental pollution (Barking, Essex : 1987)》2007,148(2):390-395
Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants. 相似文献
16.
Fuhrer J Egger A Lehnherr B Grandjean A Tschannen W 《Environmental pollution (Barking, Essex : 1987)》1989,60(3-4):273-289
Spring wheat (Triticum aestivum L., cv. Albis) was grown in the field at a site located in central Switzerland, and exposed to chronic doses of ozone (O(3)) in open-top chambers to study impacts on yield. The experiment was carried out in 1986, 1987 and 1988. The treatments used included charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air to which constant amounts of O(3) (two levels, O(3)-1 and O(3)-2) were added daily from 09.00 until 17.00 local time. Mean solar radiation-weighted O(3) concentrations during the fumigation period were in the range 0.016-0.022 microl litre(-1) (CF), 0.036-0.039 microl litre(-1) (NF), 0.057-0.058 microl litre(-1) (O(3)-1, used in 1987 and 1988 only) and 0.078-0.090 microl litre(-1) (O(3)-2). Fumigation was maintained from the three-leaf stage until harvest. Ambient plots were used as a reference. Plant characteristics examined included straw yield, grain yield, number of grains per head, number of heads per surface area, weight of individual grains and harvest index (ratio of grain weight to total dry weight). Pollutant concentrations and other environmental parameters were monitored continuously inside and outside the chambers. In 1986 and 1987, enclosure mostly increased the values of different parameters, while in 1988, they were decreased. The negative enclosure effect was due to extremely turbulent winds, which caused lodging inside the chambers. In all 3 years, increasing O(3) concentrations negatively affected the parameters studied, except for the number of heads per surface area, which showed no treatment response. Grain yield showed a very sensitive response to O(3). The effect of O(3) on grain yield was due to an effect primarily on grain size and secondarily on grain number. The relative response of grain yield to O(3) was similar in all 3 years, despite year-to-year differences in climatic conditions and enclosure effects. The analysis of the data for combined years revealed an increase of about 10% in grain yield due to air filtration. The corresponding increase in straw yield was only about 3.5%. Exposure-response models were developed for individual years and combined years. It is concluded that, in the study area, ambient O(3) may affect grain yield in spring wheat. 相似文献
17.
18.
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure. 相似文献
19.
Biochemical responses of wheat (Triticum aestivum) to the stress of tetrabromobisphenol A (TBBPA) as an emerging pollutant were examined. The results indicated that reduction of the chlorophyll (CHL) content in wheat leaves could be observed. However, the changes in the CHL content with the increasing TBBPA concentration from 50 to 5000 mg kg(-1) were insignificant (p>0.05). Increased malondialdehyde levels were detected in wheat leaves after both 7-d and 12-d exposures. The changes in the activity of superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) in wheat leaves irregularly fluctuated with time as the TBBPA concentration increased. However, significant (p<0.05) decrease in the activity of POD and CAT treated with 500 and 5000 mg kg(-1) TBBPA could be observed. Our data also showed that the plant has the capacity to tolerate the oxidative stress, but the capacity would be lost with prolonged exposure and increasing TBBPA concentration. There were no dose-response effects in the changes between the activity of antioxidant enzymes (SOD, POD and CAT) and the concentration of TBBPA. The decrease in the activity of POD and CAT could be considered as good biomarkers of serious stress by TBBPA in soil environment. 相似文献
20.
Spring wheat (Triticum aestivum L. cv. Minaret) was grown at two different CO2 concentrations (367 and 650 micromol mol(-1)) in open-top-chambers from sowing until final harvest. Furthermore two different watering treatments (well watered and water stressed) and two soil types of different fertility were used. At final harvest, which took place at growth stage 92, plants were separated into different fractions. Elevated atmospheric CO2 caused an accelerated chlorophyll-a breakdown and increased growth and yield. Total shoot biomass was enhanced by 43%, grain yield by 46% and main stem yield by 19%. Water stress also accelerated chlorophyll-a breakdown but reduced total shoot biomass by 40%, grain yield by 45%, main stem yield by 30% and thousand grain weight by 6%. On average, soil fertility altered shoot biomass by 30%, grain yield by 39% and main stem yield by 25%. 相似文献