首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load condition.  相似文献   

2.
Sidhu S  Graham J  Striebich R 《Chemosphere》2001,42(5-7):681-690
Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.  相似文献   

3.
Exhaust gas particle and ion size distributions were measured from an off-road diesel engine complying with the European Stage IIIB emission standard. The measurements were performed at idling and low load conditions on an engine dynamometer. Nucleation-mode particles dominated the diesel exhaust particle number emissions at idle load. The nonvolatile nucleation-mode geometric mean diameter was detected at 10 nm or below. The nonvolatile nucleation-mode charge state implied that it has evolved through a highly ionizing environment before emission from the engine. The determined charging probabilities were 10.0 ± 2.2% for negative and 8.0 ± 2.0% for positive polarity particles. The nonvolatile nucleation particle concentration and size was also shown to be dependent on the lubricant oil composition. The particle emissions were efficiently controlled with a partial filter or with partial filter + selective catalytic reduction (SCR) combination. The particle number removal efficiencies of the aftertreatment systems were over 95% for wet total particle number (>3nm) and over 85% for dry particle total number. Nevertheless, the aftertreatment systems’ efficiencies were around 50% for the soot-mode particles. The low-load nonvolatile nucleation particle emissions were also dependent on the engine load, speed, and fuel injection pressure. The low load particle number emissions followed the soot-core trade-off, similar to medium or high operating loads.
Implications:Idling and low-load diesel engine exhaust emissions affect harmfully the ambient air quality. The low-load particle number emissions are here shown to peak in the 10-nm size range for a modern off-road engine. The particles are electrically charged and nonvolatile and they originate from the combustion process. Tailpipe particle control by open channel filter can remove more than 85% of the nonvolatile 10-nm particles and about 50% of the soot-mode particles, while the fuel injection pressure increase can lead to particle number increase. The study provides a new viewpoint for low-load particle emissions and control.  相似文献   

4.
The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively.  相似文献   

5.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   

6.
7.
Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration.

Implications:?The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.  相似文献   

8.
In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

9.
Composition of exhaust from a ship diesel engine using heavy fuel oil (HFO) was investigated onboard a large cargo vessel. The emitted particulate matter (PM) properties related to environmental and health impacts were investigated along with composition of the gas-phase emissions. Mass, size distribution, chemical composition and microphysical structure of the PM were investigated. The emission factor for PM was 5.3 g (kg fuel)?1. The mass size distribution showed a bimodal shape with two maxima: one in the accumulation mode with mean particle diameter DP around 0.5 μm and one in the coarse mode at DP around 7 μm. The PM composition was dominated by organic carbon (OC), ash and sulphate while the elemental carbon (EC) composed only a few percent of the total PM. Increase of the PM in exhaust upon cooling was associated with increase of OC and sulphate. Laser analysis of the adsorbed phase in the cooled exhaust showed presence of a rich mixture of polycyclic aromatic hydrocarbon (PAH) species with molecular mass 178–300 amu while PM collected in the hot exhaust showed only four PAH masses.Microstructure and elemental analysis of ship combustion residuals indicate three distinct morphological structures with different chemical composition: soot aggregates, significantly metal polluted; char particles, clean or containing minerals; mineral and/or ash particles. Additionally, organic carbon particles of unburned fuel or/and lubricating oil origin were observed. Hazardous constituents from the combustion of heavy fuel oil such as transitional and alkali earth metals (V, Ni, Ca, Fe) were observed in the PM samples.Measurements of gaseous composition in the exhaust of this particular ship showed emission factors that are on the low side of the interval of global emission factors published in literature for NOx, hydrocarbons (HC) and CO.  相似文献   

10.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

11.
12.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

13.
This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

14.
A ten-month field study aimed to determine the contribution of natural events (i.e. sea-salt and mineral dust events) to urban PM concentration was carried out at six sampling sites in Central Italy (Lazio region). Four indicators have been used to identify natural events during the period of the study. The first one is constituted by the ratio between number of particles in the coarse to the accumulation mode. It is simple, cheap, and the information are given in quasi-real time, but the nature of the event (sea-salt or mineral dust) is not detectable. The second indicator relies on the chemical analysis of the collected PM by X-ray fluorescence (XRF) and allows a robust identification of sea-salt and crustal components. The third one is based on diagnostic ratios of elemental fractions: Mgextractable/Tiresidue for sea-salt and Tiresidue/Sbresidue for mineral dust. It requires skilled staff but it is most accurate and sensible. The last indicator, constructed on the basis of natural radioactivity data, is not diagnostic for the nature of the event but it is able to estimate the increase in PM concentration with respect to the expected concentration in the absence of natural events.The relevance of natural events and the variations in PM concentration and composition during the study are discussed. The joined use of the four indicators allowed the identification of about 20 natural PM episodes. In general, sea-salt aerosol events did not cause exceedance of the daily EU limit value for PM10. Saharan dust events, instead, were in most cases responsible for the exceedance of the limit value at all stations.  相似文献   

15.
We determined the usefulness of tapered element oscillating microbalances (TEOMs) for researchers and engineers involved with measuring diesel particulate mass. Two different test facilities were used for generating diesel particulates and comparing the TEOM to the commonly used U.S. Environmental Protection Agency (EPA) manual filter method. The EPA method is very labor-intensive and requires long periods of time to complete. The TEOM is an attractive approach because it has the potential to reduce the amount of time and labor required in diesel testing, as well as to provide real-time particulate-mass data that are not obtainable with the EPA method. It was found that the TEOM was a precise and easy-to-operate instrument that could measure the mass concentration (MC) of diesel particulate emissions in real time. Although the TEOM diesel particulate MC measurements were highly correlated with the manual filter measurements, the two techniques were not equivalent because the TEOM consistently reported MC results that were 20-25% lower than those obtained using the manual filter technique. In conclusion, the TEOM can be used to increase test-cell throughput and to measure transient values of diesel particulate emissions at sites performing diesel-engine testing. However, unless EPA is able to certify the TEOM as an equivalent method, it cannot replace the manual filter method for diesel certification work.  相似文献   

16.
Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted approximately 20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted approximately 35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idle CO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by approximately 100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75% of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

17.
The California Air Resources Board, CARB, has participated in a program to quantify particulate matter (PM) emissions with a European methodology, which is known as the Particulate Measurement Programme (PMP). The essence of the PMP methodology is that the diesel PM from a Euro 4 vehicle equipped with a Diesel Particulate Filter (DPF) consists primarily of solid particles with a size range greater than 23 nm. The PMP testing and the enhanced testing performed by CARB have enabled an increased understanding of both the progress that has been made in PM reduction, and the future remaining challenges for new and improved DPF-equipped diesel vehicles. A comparison of measured regulated emissions and solid particle number emissions with the results obtained by the PMP participating international laboratories was a success, and CARB’s measurements and standard deviations compared well with the other laboratories. Enhanced measurements of the influence of vehicle conditioning prior to testing on PM mass and solid particle number results were performed, and some significant influences were discovered. For example, the influence of vehicle preconditioning on particle number results was significant for both the European and USA test driving cycles. However, the trends for the cycles were opposite with one cycle showing an increase and the other cycle showing a decrease in particle number emissions. If solid particle size distribution and total particle numbers are to be used as proposed in PMP, then a greater understanding of the quality and errors associated with measurement technologies is advisable.In general, particle counting instruments gave results with similar trends, but cycle-to-cycle testing variation was observed. Continuous measurements of particle number concentrations during test cycles have given detailed insight into PM generation. At the present time there is significant variation in the capabilities of the particle counting instruments in terms of particle size and concentration.Current measurements show the existence of a large number of volatile and semi-volatile particles of yet-to-be-resolved chemical composition in diesel exhaust, especially during DPF regeneration, and these particles are not included in the PMP methodology because they are smaller than 20 nm. It will be very challenging to improve our understanding of this class of diesel particulate matter.  相似文献   

18.
Total element determination and chemical fractionation were carried out in airborne particulate matter (PM10) from the Cerrillos monitoring station in Santiago, Chile, sampled in July (winter), 1997–2003.Element concentration in the period under study (1997–2003) was statistically analyzed through cluster analysis in order to identify groups of elements having similar behavior along time. Elements such as Cd, Cu, Pb, Ni, As and Mg show a clear decrease in concentration with time. On the contrary, chromium increases its concentration almost linearly during the period.In order to estimate whether the presence of a certain element in PM10 matrix is mainly due to anthropogenic or natural processes, the enrichment factor of each element was determined.According to their behavior in the sequential extraction procedure, the elements were grouped by multivariate analysis in three clusters: (a) those mobile elements (Pb, Cd, Zn, Mn, Cu and As) which are weakly bound to the matrix (fractions 1 and 2) (b) those elements (V, Ti, and Cr) mainly bound to carbonates and oxides (fraction 3) and (c) the most immobile elements (Ni, Mo, Ca, Mg, Ba and Al), mainly bound to silicates and organic matter (fraction 4). A source of great concern is the fact that elements of such high toxicity as Pb, Cd and As are highly concentrated in both mobile fractions, indicating that these elements have a direct impact on the environment and on the health of the exposed population.  相似文献   

19.
Environmental Science and Pollution Research - The emission of particulate matter from ships does great harm to human health and atmospheric environment. Sulfur emission regulations also affect...  相似文献   

20.
Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965-2003; odometer readings 1264-207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-microm aerodynamic diameter) and fine PM1.8 (< or =1.8-microm aerodynamic diameter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emissions of 51 microg/km and 371 microg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1- and 0.18-microm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 microm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in ultrafine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号