首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the results of an investigation of the conditioning of fly ash with ammonia in electrostatic pre-cipitators of power plants operated by the Tennessee Valley Authority. It focuses attention primarily on the mechanisms of conditioning encountered under the particular circumstances available for study. No effect of ammonia on the electrical resistivity of fly ash was evident. Instead, the effect of ammonia appeared to be an enhancement pf the space-charge component of the electric field used for charging and precipitating particles of fly ash. In addition, a second effect appeared to be an increase in the cohesiveness of precipitated ash and a reduction in the quantity of ash reentrained during electrode rapping. Data demonstrating the value of ammonia conditioning for lowering the emission pf fly ash during three precipitator studies are presented. Reasons for the ineffectiveness of ammonia conditioning during a fourth precipitator study are discussed. In conclusion, comments are made about the effects to be expected from ammonia conditioning under circumr stances different from those investigated experimentally, particularly with ammonia as a conditioning agent for fly ash from low sulfur western coal.  相似文献   

2.
3.
粉煤灰在环境工程中的应用   总被引:10,自引:0,他引:10  
结合改性粉煤灰处理含铅废水的研究成果,系统地阐述了粉煤灰在环境工程领域中的应用,总结了用粉煤灰处理废水的工艺流程和工艺参数,指出了应用中存在的问题和今后研究的重点。  相似文献   

4.
Abstract

The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.  相似文献   

5.
Economic projections and the growing experience with more diverse baghouse applications indicate that fabric filtration will become an even more popular type of control technology. While the fabric filter market shows signs of great promise now, an especially significant upturn is predicted within the next half dozen years when dry scrubbing becomes the primary process for combined S02 and par-ticulate control. In the interim, with more and more utility and industrial boilers gaining experience with baghouses, this control method can be expected to develop as an even more acceptable technique, especially on low S coal burning units. Nevertheless, the users stress the need for conservative planning and designing, giving extra care to start-up and maintenance procedures.  相似文献   

6.
Electric generating plants burning medium-sulfur coal need a way to predict when ESP performance will be limited by high electrical resistivity of the collected fly ash. The main uncertainty in mathematical predictions of fly ash resistivity lies in the marginal effect of naturally occurring SO3 vapor in the flue gas. This paper results from a project to expand the data base of SO3/SO2 concentrations and fly ash resistivities measured in utility fly ash precipitators. Complete data sets are presented from three plants in the Southern Company electric system. In situ resistivity data are compared with laboratory measurements and with two different mathematical predictions of resistivity based on coal and ash analyses. The revised version of the resistivity predictor gives results in good agreement with resistivity values measured both in situ and in the laboratory.  相似文献   

7.
Abstract

In this study, the effects of the basicity on the pouring point of the municipal solid waste incinerator fly ash-sewage sludge ash mixture is investigated. Four kinds of sewage sludge ash, which were collected from several primary and secondary sewage treatment plants and were produced by different processes and sludge conditioning alternatives, were used as modifiers. The results indicate that the pouring point of the mixture increased with increasing basicity, within the range of 0.65–1.90. The pouring point is affected by the contents of the mixtures (CaO, SiO2, Al2O3, and the flux). It is suggested that an increase in the CaO content tends to raise the pouring point, whereas an increase in the SiO2 and/or the Al2O3 contents cause as adverse reaction. The prediction equation, obtained by multilinear regression (significant level is 0.05), is as follows: pouring temperature =1189.6 + 4.19CaO-0.96 SiO2-4.33 Al2O3 (R2 = 0.91). In general, the pouring point decreased when the basicity was <1. The pouring point apparently increased when the basicity was>1.2. The regression squares for the different basicities were between 0.84 and 0.91. From these relationships, we note that a basicity index of 5 gave the best R2 (0.91). From the results of this study, it can be concluded that the modification of the basicity of the fly ash by the addition of sewage sludge ash to lower the pouring point is feasible and leads to a more energy-efficient melting process. In addition, these synthetic slags have a good pozzolanic reactive activity.  相似文献   

8.
BACKGROUND, AIMS AND SCOPE: In the first part of this paper the main principles which control the dehalogenation of polychlorinated aromatic compounds on municipal waste incineration fly ash (MWI-FA) have been discussed and the model fly ash of similar dehalogenation activity has been proposed. Even if both systems show comparable dehalogenation properties, the main question concerning the postulated identical reaction mechanism in both cases is left unanswered. The other very important point is to what extent is this dechlorination mechanism thermodynamically controlled. The same problem is often discussed in the literature also for the de novo synthetic reactions. From the data it is clear that metallic copper plays a decisive role in the mechanism of the dehalogenation reaction. Although the results reported in the first part strongly support the idea that copper acts in this dechlorination as the reaction component, in contrast to its generally accepted catalytic behaviour, we believed that additional support for this conclusion can be obtained with the help of a thermodynamic interpretation of the mechanism of the reaction. RESULTS AND DISCUSSION: The pathways of hexachlorobenzene dechlorination on MWI-FA and model fly ash were studied in a closed system at 260-300 degrees C under nitrogen atmosphere. These pathways were the same for both systems, with the following prevailing sequences: hexachlorobenzene --> pentachlorobenzene --> 1,2,3,5-tetrachlorobenzene --> 1,3,5-trichlorobenzene --> 1,3-dichlorobenzene. Thermodynamic calculations were carried out by using the method of minimization total Gibbs energy of the whole system. In the calculations, the following reaction components were taken into account: all gaseous chlorinated benzenes, benzene, hydrogen chloride, a gaseous trimer Cu3Cl3, and also Cu2O and CuCl2 as solid components. The effect of the reaction temperature and the amount of copper and water vapour were considered as well. The effect of reaction temperature was determined from the data calculated for the 500 to 750 K temperature region. The effect of the initial composition was determined for the molar amounts of copper = 0.01-3 moles and water vapour = 0.2 to 3 moles per mole of chlorobenzene isomer CONCLUSIONS: The results of hexachlorobenzene dechlorination by MWI-FA and model fly ash under comparable reaction conditions allow us to conclude that both dechlorinations proceed via the same dechlorination pathways, which can be taken as an evidence of the identical dehalogenation mechanism for both systems. The relative percentual distribution of the dehalogenated products depends on the temperature, but not on the initial amount of water vapour or copper metal. On the other hand, the initial amount of copper substantially affects the conversion of the dehalogenation as well as the molar ratio of Cu3Cl3 to HCl in the equilibrium mixture. Comparison of the experimental with thermodynamic results supports the idea that dehalogenation reactions are thermodynamically controlled. RECOMMENDATIONS AND OUTLOOK: Thermodynamic analysis of the dehalogenation reactions may prove useful for a wide range of pollutants. The calculations concerning polychlorinated biphenyls and phenols are under study.  相似文献   

9.
Abstract

The long-term stability of Hg in coal combustion byproducts (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material.

Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 °C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10-8 lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevalu-ate results reported in this article.  相似文献   

10.
The main characteristics of the electrostatic collection of fuel oil ash has been investigated at a pilot precipitator installed in a laboratory rig. The relationship between collection efficiency, dust concentration and air velocity is studied and the influence of the spacing between the collection plates on both efficiency and effective migration velocity is discussed. Emphasis is put on the high degrees of efficiency attainable under suitable operating conditions.  相似文献   

11.
Unusual air particulates are linked to recent heavy infestations of the ash whitefly in California using high-performance liquid chromatography, scanning electron microscopy, optical and infrared microscopy, ion chromatography and X-ray fluorescence spectrometry. The unusual particles apparently are microdroplets of ash whitefly honeydew. Most of the suspended honeydew is in microdroplets with diameters between about two and twenty microns. The microdroplets were found to contain substantial amounts of sugars, primarily the oligosaccharides stachyose and raffinose. They also contain about 1 percent potassium, mainly as K+ The unusual microdroplets have been found in samples of air particulates taken in many areas of California after 1988.

Using a receptor model, the suspended honeydew was calculated to add as much as 40 microgm/M3 to PM10 mass. The highest levels of suspended honeydew occurred between late August and early November.  相似文献   

12.
Abstract

An assessment of the short- and long-term hazards from municipal solid waste incinerator (MSWI) ash is made through the elemental analysis of 40 to 50 elements in the ash and leachates produced by several leaching procedures. The ash was analyzed using neutron activation analysis (NAA) and x-ray fluorescence (XRF). The leachates were analyzed using NAA and inductively-coupled plasma atomic emission spectroscopy (ICP). The leaching dynamics of an ash monofill were modelled with a series of extractions using simulated acid rain. An initial spike of the metals Ag, Ba, Be, Cr, Cu, Mo, Pb, Sr, and Zn in the leachates appears to be the greatest hazard posed by MSWI ash monofills. The elements As, Cd, Cu, Hg, Pb, S, and Zn were identified as potential long term hazards utilizing a sequential extraction procedure which approximates the total amount of the elements available over the lifetime of the monofill.

The pH of the resulting leachate is the single greatest factor governing the concentration of metals in solution, more important than the concentration of the element in the ash. These results are applied to an assessment of the suitability of the Toxicity Characteristic Leaching Procedure (TCLP) in measuring leaching potential of an MSWI ash monofill.  相似文献   

13.
Abstract

A completely mixed batch reactor leaching method utilizing flow injection analysis (the CMBR-FIA method) was developed to study the lead leaching characteristics of municipal waste combustor fly ash. Flow injection analysis (FIA) coupled with atomic absorption spectrophotometry enabled the determination of lead concentrations at one minute intervals. The pH and oxidation-reduction potential of the solution were continuously monitored to characterize the leaching conditions. Automatic titration was used to alter the solution pH to defined endpoints. The CMBR-FIA method offers the ability to immediately observe alterations to the leaching solution, and grants the freedom to study a number of parameters concurrently. The CMBR-FIA method is a rapid and reliable means to investigate leaching characteristics. This paper describes the method and demonstrates its use to monitor the leaching of lead from municipal solid waste combustor fly ash as a function of pH. Soluble lead concentrations are shown to increase quickly with decreasing pH.

A maximum of 50% of the total lead concentration was available in solution at pH 2. This value gradually decreased with time to over 35% of the total.  相似文献   

14.
Some of the features of the fluidized-bed combustion (FBC) process have a direct bearing on the particulate properties that most strongly influence filtering pressure drop. A laboratory program was conducted to experimentally determine the relative pressure drop characteristics of ashes from the TVA-EPRI 20-MW bubbling bed, atmospheric pressure FBC (AFBC) pilot plant and six pulverized-coal combustion (PC) units. The combined influences of measured particle and dust cake properties on filtering pressure drop were estimated with existing filtration theories. These theories predict a higher pressure drop for a dust cake produced with the AFBC ash than for one consisting of any of the PC ashes. Laboratory measurements were made of the flow resistance of idealized, simulated dust cakes to confirm these predictions. Field operating data from the fabric filters collecting some of the tested ashes were available to validate the laboratory results. The laboratory and field data show relatively good agreement. The AFBC ash must be treated as a special case for fabric filters, and careful selection of cleaning method and fabric must be made to minimize the inherently high pressure drop characteristics of this ash.  相似文献   

15.
This paper presents a detailed review and critical evaluation of current technologies as applied to fine particulate emissions from coal-fired utility boilers. Quantitative assessments of the capabilities of both conventional and novel air pollution control devices to meet three different performance standards—the present New Source Performance Standard (NSPS) of 0.03 Ib particulate/MBtu heat input, and standards of 0.05 and 0.1 Ib particulate/MBtu are included. Each of the three conventional devices (electrostatic precipitator, fabric filter baghouse, and wet scrubber) is compared and rated with respect to eight different performance categories. This information can be used to determine the relative effectiveness and attractiveness of these three control devices. Novel devices are compared and rated in the same manner, the conclusions from which may provide the research administrator with a guide for the selection of those novel devices which offer the best potential for commercialization.

The major conclusions of the investigation are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers may no longer be feasible at the new NSPS of 0.03 Ib/MBtu. (2) At the old NSPS (0.1 Ib/MBtu) conventional electrostatic precipitators and baghouses were often competitive. For the new stricter standard, however, the baghouse generally is the more attractive alternative. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.  相似文献   

16.
Fifty years ago electrostatic precipitation, which had been used successfully for collection of sulfuric acid mist, was first applied to a power plant installation for control of fly ash from pulverized fuel. This is the history of the design and application of the principle as the power generation industry adapted to changing environmental problems and concerns.  相似文献   

17.
The relationship between sulfur in coal, boiler exit gas temperature, and the carbon portion of fly ash have a major effect on the electrical properties of fly ash. Whether effective collection of fly ash is obtained by the electrostatic precipitator installation alone or the precipitator—mechanical combination depends primarily on a knowledge of this relationship. Fly ash electrical properties can range from a highly "resistive" to a highly "conductive" state which can appreciably alter the precipitator collection performance. A correlation of coal sulfur and boiler exit flue gas temperature is given to indicate the probability of expecting an optimum voltage—current relationship with different combinations of these factors. Carbon affects the electrical conditioning of fly ash by providing parallel paths of current leakage through the deposited dust layer. Therefore, removal of the carbon particles in a mechanical collector placed before the precipitator can alter the precipitator electrical characteristics.  相似文献   

18.
Abstract

Three types of hydraulic cements have been developed by incorporating sludge ash from a primary sewage treatment plant and a water purification plant, as well as slag from steelworks (ferrate), as a partial replacement for clay, silica, alumina, and iron oxide in raw cement meal. The raw meal for the pre-determined recipes was prepared by heating it to 1400 °C for 6 hr in a clinkerization process, using a simulated incinerator and smelter. The major components of ordinary Portland cement, C3S, C2S, C3A, and C4AF, were all found in the clinkers. Of the three types of eco-cements, the eco-cement A paste was most similar to ordinary Portland cement in terms of composition and compressive strength development, while the eco-cement B paste showed early strength development. The differential thermal analysis species analyses indicated that the hydrates in the eco-cement pastes were mainly calcium hydroxide and CSH gels, like those found in ordinary Portland cement paste. Moreover, the degree of hydration, as determined by nuclear magnetic resonance, increased in all eco-cement pastes with an increasing curing age. The results indicate that it indeed is feasible to use sludge ash and ferrate to replace up to 20% of the mineral components of raw materials for cement.  相似文献   

19.
ABSTRACT

Vitrification processes, in which the operating temperature is higher than the melting point of the silica compounds contained in sewage sludge that turns into slag, are studied in this paper. The dried sludge and the incineration ash are injected into a furnace with auxiliary fuel and flux. The flux is the material used to control basicity of the ash content. Crushed limestone is used as the flux in this test. Almost all ashes in the sludge are vitrificated into slag. The flow of molten slag from the tap is smooth. After the slag is treated, it can be used as wall tile, interlocking tile, insulating material, and slag wool. This technology conforms to resource recycling.  相似文献   

20.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号