首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

Cathode ray tube (CRT) glass contains significant amounts of alkali and alkaline earth oxides, making it a useful by-product for use in the ceramics industry. Among the various alkali oxides present, those of strontium (SrO), calcium (CaO), and magnesium (MgO) are well known flux materials used widely in the ceramics industry. The most effective flux, SrO, is also a limited resource. In this study, we aimed to develop an environmentally friendly, low-cost method for recycling CRT waste by using it to produce transparent ceramic frits on an industrial scale. Four different samples were fabricated containing between 13 and 25 wt.% CRT panel glass. The color values, sintering behaviors, phases, and microstructural properties of the corresponding samples were analyzed and compared. The results indicate that a composition containing 25 wt.% CRT panel glass could pass the ISO 10545 test. Thus, the results confirm that CRT glass can be used to inexpensively produce transparent ceramic frits at an industrial scale.

Implications: The recycling of electronic waste (e-waste), including CRT waste, has increased by high rates of computer and TV consumption. This increase in consumption is likely to increase the rate at which CRTs are discarded. However, CRTs cannot be recycled in the desired amount. Owing to the high silicate, barium and strontium content of CRTs, it has great potential for glass ceramics such as frits. CRT panel glass to produce commercial transparent frit at low cost through an industrial production route for use in single-fire sintered products. Thus, CRT wastes can be recycled cost-effective, sustainable and environmentally friendly.  相似文献   

2.
The State of Florida passed The Florida Solid Waste Management Act of 1988 mandating that county recycling programs be initiated by July 1, 1989. The legislation further expressed the goal that, at a minimum, recycling efforts reduce the amount of solid waste requiring final disposal or resource recovery by 30 percent by the end of 1994. This study was performed to determine the impact on recycle markets when the amounts of materials recycled from the municipal solid waste stream are increased by 30 percent in Florida.

The composition of the municipal waste stream was quantified in terms of the amounts of paper, plastic, metals, glass, and rubber. The effect of a 30 percent increase in the recycle rate of each class of material was calculated and compared to existing recycle rates in the State of Florida. It was determined that there are few capacity constraints on the increase in recycle rates for aluminum, steel (i.e., tin cans), and color separated glass. There are, however, serious constraints on increasing recycle rates for paper, plastics and rubber tires.  相似文献   

3.

In recent times, the issue of plastic recycling has become one of the leading issues of environmental protection and waste management. Polymer materials have been found an application in many areas of daily life and industry. Along with their extended use, the problem of plastic wastes appeared because, after withdrawal from use, they became persistent and noxious wastes. The possibility of reusing polymeric materials gives a possibility of valorization—a second life—and enables effective waste utilization to obtain consumable products. The 3D printing market is a well-growing sector. Printable filaments can be made from a variety of thermoplastic materials, including those from recycling. This paper focuses on a review of the available literature on the production of filaments for 3D printers from recycled polymers as the alternative to present approach of central selective collection of plastics. The possibility of recycling of basic thermoplastic materials and the impact of processing on their physicochemical and mechanical properties were verified (Lanzotti et al. 2019). In addition, commercially available filaments produced from recycled materials and devices which allow self-production of filaments to 3D printing from plastic waste were reviewed.

  相似文献   

4.

This study evaluates carbon emissions of construction and demolition (C&D) waste generated by building refurbishment, using a life cycle assessment approach through a case study project in China. Three waste management scenarios were developed for a building refurbishment project in the city of Suzhou. Scenario 1 is under the business-as-usual C&D waste management practice in China; scenario 2 is based on the open-ended 3R strategy, which focuses on the downstream impact of waste; and scenario 3 considers both the upstream and downstream impact of waste. The results reveal that the composition of the waste generated from building refurbishment projects is different from construction and demolition projects. In the life cycle of C&D waste management of building refurbishment projects, the refurbishment material stage generates the highest carbon emissions compared to the dismantlement, refurbishment construction, and refurbishment material end of life stages. Scenario 1 produces higher carbon emissions than scenario 2, but the difference is not significant in the whole life cycle of the building refurbishment project, whereas carbon emissions for scenario 3 are significantly less than both scenario 1 and scenario 2. The study finds the reason for this difference is that scenario 1 and scenario 2 are based on a linear economy that relies on unsustainable demand for raw materials, whereas scenario 3 is based on a circular economy that uses upcycled materials to substitute for raw materials and considers waste management from a cradle to cradle perspective. This study fills a research gap by evaluating carbon emissions of different waste management strategies for building refurbishment projects, which are expected to be an increasing portion of overall construction activity in China for the foreseeable future.

  相似文献   

5.
Nowadays our planet suffers from an accumulation of plastic products that have the potential to cause great harm to the environment in the form of air, water, and land pollution. Plastic water bottles have become a great problem in the environment because of the large numbers consumed throughout the world. Certain types of plastic bottles can be recycled but most of them are not. This paper describes an economical solvent-free process that converts polyethylene terephthalate (PET) bottles waste into carbon nanostructure materials via thermal dissociation in a closed system under autogenic pressure together with additives and/or catalyst, which can act as cluster nuclei for carbon nanostructure materials such as fullerenes and carbon nanotubes. This research succeeded in producing and controlling the microstructure of various forms of carbon nanoparticles from the PET waste by optimizing the preparation parameters in terms of time, additives, and amounts of catalyst.

Implications: Plastic water bottles are becoming a growing segment of the municipal solid waste stream in the world; some are recycled but many are left in landfill sites. Recycling PET bottles waste can positively impact the environment in several ways: for instance, reduced waste, resource conservation, energy conservation, reduced greenhouse gas emissions, and decreasing the amount of pollution in air and water sources. The main novelty of the present work is based on the acquisition of high-value carbon-based nanomaterials from PET waste by a simple solvent-free chemical technique. Thus, the prepared materials are considered to be promising, cheap, eco-friendly materials that may find use in different applications.  相似文献   


6.
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.  相似文献   

7.

The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns—primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.

  相似文献   

8.

The shrinkage of cement-based materials is a critical dimensional property that needs proper attention as it can influence the corresponding characteristics especially when the preparation of such cement-based material is done in hot weather. Studies have shown that the casting or curing conditions influence the performance of concrete. However, there is limited understanding of the combined role of casting temperature and curing conditions, especially for concrete made with unconventional binders. In this study, five supplementary cementitious materials (SCMs) were utilized as the substitute of the ordinary Portland cement (OPC) at different ratios to produce greener concrete and improve its characteristics and sustainability. The influence of four casting temperatures (i.e., 25 °C, 32 °C, 38 °C, and 45 °C) and two curing regimes (i.e., covering of samples using wet burlap and applying curing compound on the surface of samples) on the corresponding compressive strength and drying shrinkage at various ages was studied. The outcomes of this research revealed that the composition of the binders has a substantial impact on the characteristics of concrete. In addition, the casting temperature and curing regimes also have a huge role on the compressive strength of concrete produced with binary binders. For example, the compressive strength at 3 days of concrete made at 25 °C made with binary binders was reduced up to 31% compared to that made with only OPC as the binder when cured using wet burlap. Nonetheless, less than 38 ℃ was suitable to minimize the durability issues in the studied blended cement mixes.

  相似文献   

9.
In the Hazardous and Solid Waste Amendments of1984, Congress declared the objective of the national waste policy to be "to promote the protection of health and the environment and to conserve valuable material and energy resources." Further, Congress stated that this would be done by minimizing the generation and land disposal of hazardous waste by encouraging process substitutions, materials recovery, proper recycling and reuse, and treatment.

This paper presents the approach used by 3M to find innovative ways to minimize the amount of hazardous waste which ultimately must be disposed by landfilling. The life cycle of waste is examined, looking at how it can be reduced or eliminated starting with the point of generation in the manufacturing operation, to its processing, treatment or ultimate disposal as a residual hazardous waste. Case histories are used as examples of how waste can be minimized in each stage of the life cycle, with emphasis on innovative alternatives that have arisen out of the 3Mprogram.  相似文献   

10.
The present work includes a process for encapsulation by combining substantially simultaneously dry nonmetallic printed circuit boards (PCBs) powder and recycled high-density polyethylene (rHDPE) in an extruder to form a homogenous matrix. The extruded materials were then molded into standard tensile, flexural, and impact properties testing specimens. Nonmetallic PCB mainly consists of large amount of glass fiber–reinforced epoxy resin materials. Incorporation of 50 wt% nonmetallic PCB in rHDPE matrix had increased the flexural strength and modulus by 35% and 130%, respectively. Tensile strength reported to be constant without much improvement. However, the Young’s modulus has increased by 180%, with incorporation of 50 wt% nonmetallic PCB. The addition of 6 phr (parts per hundred) maleated polyethylene (MAPE) resulted in 2-fold increase in tensile and flexural strength. Regarding the leaching properties, Cu was identified as the metal that leached at the highest level from the raw nonmetallic PCB, at 59.09 mg/L. However, after the nonmetallic PCB was filled in rHDPE/PCB composites, the concentration of Cu was reduced far below the regulatory limit, to only 3 mg/L. Thermal properties of composites were studied, and it was found out that incorporation of nonmetallic PCB fillers in rHDPE resulted in low thermal conductivity, whereas mechanical strength of the composites showed maximum improvements at 220 °C. Overall, the encapsulation technique using nonmetallic PCB waste has formed a monolithic waste form that provides a barrier to the dispersion of wastes into the environment.
ImplicationsNonmetallic materials reclaimed from waste PCBs were used to analyze the chemical composition, and it was found that nonmetalllic PCBs mainly consist of glass fiber–reinforced epoxy resin materials. With such millions of glass fibers in nonmetallic PCBs, there are mass-excellent supporting bodies that enhance the mechanical properties of composites. In fact, utilization of nonmetallic PCB waste as filler in composites can dramatically restrain the solubility of heavy metals in leachate solution, thus making it safe to be used in practical products.  相似文献   

11.
随着城市建设的发展,城市道路改建时产生的大量的废弃混凝土块的有效利用成了一个亟待解决的问题。结合宜昌市东山大道改建项目,将废弃的混凝土面板加工形成再生集料用作水泥稳定碎石基层,达到节约资源和保护环境的目的。实验分析了再生集料的颗粒级配、压碎值、针片状颗粒含量、表观密度和吸水率等工程性质指标,同时对水泥稳定再生碎石的级配、最佳水泥掺量进行了设计,并对水泥稳定再生碎石的无侧限抗压强度指标进行了研究。研究表明,废旧混凝土经加工形成的再生集料具有良好的路用性能,其颗粒级配、压碎值以及主要指标均达到了路面基层材料的要求;掺3%、5%和7%水泥稳定再生集料7 d浸水抗压强度均达到路面基层的要求,水泥稳定再生集料用作路面基层是可行的;掺3%水泥稳定的再生集料可以用在公路的底基层,掺5%及7%水泥稳定的再生集料可以分别用作路面下基层和上基层。  相似文献   

12.
Formation, release and control of dioxins in cement kilns   总被引:2,自引:1,他引:1  
Karstensen KH 《Chemosphere》2008,70(4):543-560
Co-processing of hazardous wastes in cement kilns have for decades been thought to cause increased emissions of PCDD/PCDFs--a perception that has been evaluated in this study. Hundreds of PCDD/PCDF measurements conducted by the cement industry and others in the last few years, on emissions and solid materials, as well as recent test burns with hazardous wastes in developing countries do not support this perception. Newer data has been compared with older literature data and shows in particular that many emission factors have to be reconsidered. Early emission factors for cement kilns co-processing hazardous waste, which are still used in inventories, are shown to be too high compared with actual measurements. Less than 10 years ago it was believed that the cement industry was the main contributor of PCDD/PCDFs to air; data collected in this study indicates however that the industry contributes with less than 1% of total emissions to air. The Stockholm Convention on POPs presently ratified by 144 parties, classifies cement kilns co-processing hazardous waste as a source category having the potential for comparatively high formation and release of PCDD/PCDFs. This classification is based on early investigations from the 1980s and 1990s where kilns co-processing hazardous waste had higher emissions compared to those that did not burn hazardous waste. However, the testing of these kilns was often done under worst case scenario conditions known to favour PCDD/PCDF formation. More than 2000 PCDD/PCDF cement kiln measurements have been evaluated in this study, representing most production technologies and waste feeding scenarios. They generally indicate that most modern cement kilns co-processing waste today can meet an emission level of 0.1ngI-TEQ/m(3), when well managed and operated. In these cases, proper and responsible use of waste including organic hazardous waste to replace parts of the fossil fuel does not seem to increase formation of PCDD/PCDFs. Modern preheater/precalciner kilns generally seems to have lower emissions than older wet-process cement kilns. It seems that the main factors stimulating formation of PCDD/PCDFs is the availability of organics in the raw material and the temperature of the air pollution control device. Feeding of materials containing elevated concentrations of organics as part of raw-material-mix should therefore be avoided and the exhaust gases should be cooled down quickly in long wet and long dry cement kilns without preheating. PCDD/PCDFs could be detected in all types of solid samples analysed: raw meal, pellets and slurry; alternative raw materials as sand, chalk and different ashes; cement kiln dust, clinker and cement. The concentrations are however generally low, similar to soil and sediment.  相似文献   

13.
针对目前没有合理方法处置含铜污泥的问题,利用水泥窑协同处置技术对含铜污泥进行处置,以达到废物资源化的目的。通过掺入不同量的含铜污泥煅烧成水泥熟料,探讨了含铜污泥对硅酸盐水泥熟料性能及其中所含重金属的浸出对环境安全性的影响。结果表明,含铜污泥的加入明显降低了熟料的f-CaO质量分数,改善了水泥生料的易烧性。当含铜污泥掺量为4%及以下时,含铜污泥掺入会有效促进硅酸盐水泥的水化,使3、7和28 d抗压强度最高分别可达到49.85、46.85和65.8 MPa;当其掺量超过4%后,会明显抑制水泥的水化,劣化水泥水化程度,使其力学强度迅速降低。熟料各矿物相对重金属元素的固化具有选择性,含铜污泥中含量最多的Cu主要存在于中间相中,少数分布于硅酸盐相中;含铜污泥中的Cu离子可以有效固化在水泥熟料中,固化率最高可达87%。Cu离子在水泥净浆中的浸出浓度低于工业固体废弃物浸出毒性鉴别标准的规定指标,水泥窑协同处置含铜污泥在使用中不会对环境造成二次污染。本研究结果可为水泥窑协同处置含铜污泥应用提供参考。  相似文献   

14.
ABSTRACT

Cost-effectiveness of different plant solutions for glass furnace waste gas cleaning is compared in the present paper. Plant arrangements based on electrostatic precipi-tator or fabric filter dust collectors and wet, semi-dry, or dry processes for acid gas removal have been considered. A critical survey of each solution's advantages and disadvantages has been presented, taking into account both effectiveness and costs resulting from each available system. Finally, a quantitative assessment has been provided with reference to a case study involving actual float glass production lines at SIV plants located in northern and central Italy.  相似文献   

15.
Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.  相似文献   

16.
为了探索水泥窑共处置危险废物过程中重金属流向分布规律,研究了不同温度条件下Cr、As、Pb在煅烧熟料、颗粒物和尾气中的残留率.在900、1 000、1 100、1 200、1 300和1 450℃温度条件下,将添加Cr、As和Pb化学试剂的生料分别进行煅烧,模拟重金属在水泥窑内不同温度带的煅烧过程.结果表明,6个温度条件下,Cr主要分布在熟料中并且呈现不规则变化;颗粒物中的Cr在1 200℃条件下分布量最大,所占比例为32.79%(w);在900℃和1450℃条件下,烟气中的Cr分布量最大,所占比例为0.24%(w).6个温度条件下As主要分布在熟料中并且1 000~1 450℃条件下稳定在81%~83%之间;在900℃条件下,As在熟料中的残留率最大,所占比例为97%(w);在1450℃条件下,As在尾气中的分布达到最大值,所占比例为0.0023%(w).6个温度条件下,Pb在熟料中的残留率随着温度升高而逐渐减少,挥发颗粒物中的含量呈现相反的趋势;尾气中Pb的含量随着温度的升高逐渐增加.  相似文献   

17.
根据垃圾土的大中型三轴压缩实验结果,分析了垃圾土的抗剪强度机理。垃圾土的抗剪强度是由剪切带上各成分间的摩擦和纤维加筋相产生的拉力共同提供,剪切变形初期主要以摩擦为主,随着变形的增加纤维加筋相产生的拉力所发挥的作用逐渐增强。基于三轴压缩实验结果,建立了垃圾土的复合幂、指数应力-应变模型,该模型参数少且具有明确的物理意义,即可反映应变较小和应变较大时的非线性特性,也可反映应变较大时垃圾土明显的加工硬化特性,特别是应力-应变关系曲线增长性向上翘的特征。与实验结果相比,该模型的相关系数均达到0.98以上。  相似文献   

18.
Abstract

Cathode ray tubes (CRTs) from computer monitors and television sets, which contain significantly high percentage of lead (Pb) by weight, represent an enormous and growing hazardous waste problem in the United States and worldwide. As a result, new technologies are needed to cope with current CRT waste stream and increased hazard and build new markets for its recycled components, developing commercially viable concrete composites, as well as minimizing CRT disposal problems. In this study, commercially available biopolymers, such as xan-than gum, guar gum, and chitosan, were used to encapsulate CRT glass waste, reducing the Pb leachability. The biopolymers utilized contain a number of useful functional groups, such as carboxyl (xanthan), hydroxyl (guar), and amino groups (chitosan), which play important roles in binding and stabilizing Pb onto concrete structures. The use of biopolymers in concrete systems can create a stable interpenetrating cross-linking composite that will last for many years. Results from these new composites show 30% higher compressive strength than standard concrete and a sharp decrease in lead leachability from several thousand milligrams per liter initially to an amount of three-tenths milligrams per liter or lower values (much lower than the U.S. Environment Protection Agency standard for hazardous waste of 5 mg/L by the toxicity characteristic leaching procedure test), and for some of the composites leachability is below even the standard for drinking water. This efficient and cost-effective CRT–biopolymer-concrete composite is a new class of biopolymer-modified material that can potentially perform a significant role in relieving the current CRT issue.  相似文献   

19.
This paper focuses on appropriation of natural capital through construction of buildings. The ecological footprint and the Costanza natural capital concepts are applied. The environmental consequences of human settlement are currently of great concern, and a need is felt to reduce the impact of building on the environment. The embodied energy of building materials and the "land area" required to sustain their production are considered to evaluate the demand on nature of this activity. The ecological footprints of 2 typical Italian buildings are compared. The paper also focuses on how to reduce the natural capital appropriation of building construction by means of environmentally inexpensive materials, renewable energy resources, and optimization of the use of bioproductive land by construction of multistoried buildings. Finally, to allocate an environmental load of buildings, an economic evaluation of natural capital appropriation through building construction is proposed.  相似文献   

20.
建材工业氟污染控制技术   总被引:1,自引:0,他引:1  
本文综述了迄今国内外就砖瓦、陶瓷、搪瓷、水泥及玻璃生产等建材工业氟污染的控制技术 ,并重点介绍了德国为控制该类氟污染所采取的措施  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号