首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate.  相似文献   

2.
Li H  Liu L  Lin C  Wang S 《Chemosphere》2011,84(7):943-949
A 60-d greenhouse experiment was conducted to investigate the uptake and in-soil degradation of PCB-5 under single cropping and intercropping conditions involving three crop plant species: pumpkin, soybean and corn. Volatilization of PCB-5 from the soil surface was also tested. The results show that while uptake of PCB-5 by the test plant species is possible and the root concentration of PCB-5 had a control on the upward transport of PCB-5 to the above-ground portion of the plants, the PCB-5 extracted by the plants mainly accumulated in the root materials. Phytoextraction contributed insignificantly toward the loss of the soil-borne PCB-5. Volatilization of PCB-5 from the soil was recorded but it appeared that this did not result in a marked loss of PCB-5 in the bulk soil though it might cause remarkable removal of PCB-5 in a thin layer of the topsoil (1 mm). It is likely that the in-soil biodegradation contributed markedly to the observed reduction in soil-borne PCB-5. The in-soil biodegradation of PCB-5 was significantly enhanced under intercropping conditions, which appeared to be related to increased microbial activities, particularly bacterial activities. The soil residual PCB-5 was correlated with the activity of the following enzymes: catalase (CAT), polyphenol oxidase (PPO) and peroxidase (POD).  相似文献   

3.
Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of yield and AOT40. Cultivar response reflects that QPM performed better than NQPM against elevated O3.  相似文献   

4.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   

5.
Environmental Science and Pollution Research - Sunflower plants need nitrogen consistently and in higher amount for optimum growth and development. However, nitrogen use efficiency (NUE) of...  相似文献   

6.
A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O3 concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O3.  相似文献   

7.
Seasonal variations in response of spinach to elevated ultraviolet-B (UV-B) during summer and winter were assessed with respect to growth, biomass, yield, NPK uptake and NPK use efficiencies at varying NPK levels. The nutrient amendments were recommended NPK (RNPK) and 1.5 times recommended NPK (1.5 RNPK). Season significantly affected the measured parameters except the number of leaves. Under ambient UV-B, the growth performance of summer spinach was better in both the NPK levels, higher being at 1.5 RNPK leading to higher nutrient uptake. However, more reduction in biomass under elevated UV-B in 1.5 RNPK was recorded during summer, while during winter in RNPK. Reduction in biomass under elevated UV-B was accompanied by the modification in its partitioning with more biomass allocation to root during summer compared to winter at both the NPK levels. NPK uptake was higher in summer, while NPK use efficiencies were higher during winter. At higher than recommended NPK level, better NPK use efficiencies were displayed during both the seasons. Increased NPK supply during winter enabled spinach to capitalize light more efficiently and hence increased biomass accumulation. Strategies for surviving elevated UV-B in winter differ from those that provided protection from the same stress when it occurs in summer.  相似文献   

8.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

9.
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.  相似文献   

10.
Environmental Science and Pollution Research - Cadmium (Cd) contamination of farmland soils is a widespread problem around the globe, and rice (Oryza sativa L.) tends to accumulate more Cd and is...  相似文献   

11.
12.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

13.
de Wit HA  Wright RF 《Ambio》2008,37(1):56-63
Fluctuations in the 20-year record of nitrate (NO3) and total organic carbon (TOC) concentrations and fluxes in runoff at the small headwater catchment Storgama, southern Norway, were related to climate and acid deposition. The long-term decline in NO3 related to reduced NO3 deposition and increased winter discharge, whereas the long-term increase in TOC related to reduced sulfur deposition. Multiple regression models describing long-term trends and seasonal variability in these records were used to project future concentrations given scenarios of climate change and acid deposition. All scenarios indicated reduced NO3 fluxes and increased TOC fluxes; the largest projected changes for the period 2071-2100 were -86% and +24%, respectively. Uncertainties are that the predicted future temperatures are considerably higher than the historical record. Also, nonlinear responses of ecosystem processes (nitrogen [N] mineralization) to temperature, N-enrichment of soils, and step-changes in environmental conditions may affect future leaching of carbon and N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号