首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced nitrogen in ecology and the environment   总被引:10,自引:0,他引:10  
Since the beginning of the 19th century humans have increasingly fixed atmospheric nitrogen as ammonia to be used as fertilizer. The fertilizers are necessary to create amino acids and carbohydrates in plants to feed animals and humans. The efficiency with which the fertilizers eventually reach humans is very small: 5-15%, with much of the remainder lost to the environment. The global industrial production of ammonia amounts to 117 Mton NH(3)-Nyear(-1) (for 2004). By comparison, we calculate that anthropogenic emissions of NH(3) to the atmosphere over the lifecycle of industrial NH(3) in agriculture are 45.3 Mton NH(3)-Nyear(-1), about half the industrial production. Once emitted ammonia has a central role in many environmental issues. We expect an increase in fertilizer use through increasing demands for food and biofuels as population increases. Therefore, management of ammonia or abatement is necessary.  相似文献   

2.
Reactive nitrogen and the world: 200 years of change   总被引:16,自引:0,他引:16  
Galloway JN  Cowling EB 《Ambio》2002,31(2):64-71
This paper examines the impact of food and energy production on the global N cycle by contrasting N flows in the late-19th century with those of the late-20th century. We have a good understanding of the amounts of reactive N created by humans, and the primary points of loss to the environment. However, we have a poor understanding of nitrogen's rate of accumulation in environmental reservoirs, which is problematic because of the cascading effects of accumulated N in the environment. The substantial regional variability in reactive nitrogen creation, its degree of distribution, and the likelihood of increased rates of reactive-N formation (especially in Asia) in the future creates a situation that calls for the development of a Total Reactive Nitrogen Approach that will optimize food and energy production and protect environmental systems.  相似文献   

3.
Urban expansion and the loss of prime agricultural lands in Puerto Rico   总被引:1,自引:0,他引:1  
López TM  Aide TM  Thomlinson JR 《Ambio》2001,30(1):49-54
In many countries where the economy has shifted from mainly agricultural to industrial, abandoned agricultural lands are lost to urbanization. For more than 4 centuries the Puerto Rican economy depended almost entirely on agriculture, but sociopolitical changes early in the 20th century resulted in a shift to industry. This shift in the economy, and an increase in population, has resulted in an increase in urban areas. This study describes the rate and distribution of urban growth on the island of Puerto Rico from 1977 to 1994 and the resulting influence on potential agricultural lands. Urban extent and growth were determined by interpreting aerial photographs and satellite imagery. The 1994 urban coverage was combined with a soil coverage based on agricultural potential to determine the distribution of urban areas relative to potential farmlands. Analyses showed that in 1977, 11.3% of Puerto Rico was classified as urban. After 17 years, urban areas had increased by 27.4% and urban growth on soils suitable for agriculture had increased by 41.6%. This represents a loss of 6% of potential agricultural lands. If this pattern of encroachment by urban growth into potential farmlands continues, Puerto Rico's potential for food production in the future could be greatly limited.  相似文献   

4.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

5.
As the world gets ready to begin the second decade of the twenty-first century, global climate change has been recognized as a real threat to civilization as we know it. The rapid and successful economic growth of developing nations, particularly China and India, is contributing to climate change. The route to initial economic success in China followed that of the developed nations through the development of industries. Unfortunately, China's environmental protection efforts have not been the same as in developed countries because China is vastly different culturally, socially, economically and, especially, politically from developed nations. When China started to deal with environmental concerns in the late 1970s, it took advantage of the experiences of other countries in establishing environmental standards and regulations, but it did not have a model to follow when it came to implementing these standards and regulations because of the abovementioned differences. Economically, China is transitioning from an agricultural base into an industrial base; however, even now, 60% of the population remains farmers. China has been and still is heavily dependent upon coal for energy, resulting in serious atmospheric particulate pollution. While growing efforts have been expended on the environment, at this juncture of its economic development, China would be well served to revisit the traditional “develop first and clean up later” approach and to find a balance between development and protecting the environment. Against this backdrop, a reflective look of the effort to manage air quality from 1949–2008 (with an emphasis on the past 30 years) in China is presented in this paper. The environmental component of the 2008 Olympic Games is examined as a special example to illustrate the current measures being used to improve air quality in China.  相似文献   

6.
We relate the historical (1850–2000) spatial and temporal changes in cropland cover in the conterminous United States to several socio-economic and biophysical determinants using an eco-region based spatial framework. Results show population density as a major determinant during the nineteenth century, and biophysical suitability as the major determinant during the twentieth century. We further examine the role of technological innovations, socio-economic and socio-ecological feedbacks that have either sustained or altered the cropland trajectories in different eco-regions. The cropland trajectories for each of the 84 level-III eco-regions were analyzed using a nonlinear bi-analytical model. In the Eastern United States, low biophysically suitable eco-regions, e.g., New England, have shown continual decline in the cropland after reaching peak levels. The cropland trajectories in high biophysically suitable regions, e.g., Corn Belt, have stabilized after reaching peak levels. In the Western United States, low-intensity crop cover (<10 %) is sustained with irrigation support. A slower rate of land conversion was found in the industrial period. Significant effect of Conservation Reserve Program on planted crop area is found in last two decades (1990–2010).  相似文献   

7.
Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape.  相似文献   

8.
《Chemosphere》1996,33(1):159-176
This paper provides the first time series estimates of global anthropogenic methane emissions from the mid-19th century to the present. Our purpose is to provide time series estimates of anthropogenic methane emissions for global climate models estimated or calibrated using historical time series data. Previous estimates of methane emissions include “top-down” (deconvolution) estimates of total emissions, estimates of global anthropogenic emissions for the 16th century, and various estimates of anthropogenic and natural emissions in the 1980s and 1990s. This study uses previously published point estimates for the 16th century and the 1980s and early 1990s and a variety of historical time series of proxy variables to estimate a time series of global anthropogenic methane emissions. We find that anthropogenic methane emissions have increased from about 80 million tonnes per annum in 1860 to about 380 million tonnes in 1990. The relative importance of various emission sources changes over time. The rate of increase now may be slowing. A comparison with the estimates generated by Khalil and Rasmussen suggests that natural sources of methane have declined over the period. There are, however, great uncertainties in these estimates which future research may be able to reduce.  相似文献   

9.
Nitrogen fertilizers: meeting contemporary challenges   总被引:1,自引:0,他引:1  
Fixen PE  West FB 《Ambio》2002,31(2):169-176
At 81.7 million tonnes (Mt), commercial fertilizer nitrogen (N) accounts for approximately half of all N reaching global croplands today and supplies basic food needs for at least 40% of the population. The challenge is to continue to help meet that need while minimizing the risk of negative environmental impacts through improved N-use efficiency. Fertilizer-N efficiency on corn in the US has increased more than 30% over the last 20 years, but additional progress can be made for corn and other crops. Current N efficiency and productivity are generally lower in most of Asia than in North America, but they are improving. The fertilizer industry recognizes its crucial role in meeting basic human needs, now and in the future. It stands ready to meet the challenge of adopting new practices and technologies that will allow it to do so with greater efficiency and in a way that not only sustains life, but also sustains the quality of life.  相似文献   

10.
Rising human demand and climatic variability have created greater uncertainty regarding global food trade and its effects on the food security of nations. To reduce reliance on imported food, many countries have focused on increasing their domestic food production in recent years. With clear goals for the complete self-sufficiency of rice production, Sri Lanka provides an ideal case study for examining the projected growth in domestic rice supply, how this compares to future national demand, and what the associated impacts from water and fertilizer demands may be. Using national rice statistics and estimates of intensification, this study finds that improvements in rice production can feed 25.3 million Sri Lankans (compared to a projected population of 23.8 million people) by 2050. However, to achieve this growth, consumptive water use and nitrogen fertilizer application may need to increase by as much as 69 and 23 %, respectively. This assessment demonstrates that targets for maintaining self-sufficiency should better incorporate avenues for improving resource use efficiency.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0720-2) contains supplementary material, which is available to authorized users.  相似文献   

11.
Crop Yield Gaps in Cameroon   总被引:2,自引:0,他引:2  
Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country’s ability to meet the food needs of its population. This study examines the country’s potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers’ fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers’ farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.  相似文献   

12.
Jansson U  Kautsky U  Miliander S 《Ambio》2006,35(8):505-512
Production and consumption of food and in a rural area over the last 400 years were reconstructed for a parish in south east Sweden. This was based on a number of different data sources, including historical maps and official demographic and agricultural statistics. Changes in population (and thus consumption) and the production from arable land and livestock were calculated and used to provide an estimate of the area's supply and demand over time, and of the historical sustainability of the area. Overall food productivity was remarkably constant over time, at approximately 0.04 kgC m(-2) y(-1), despite recent changes in population size and the area of cultivated land. The empirical results from the past and the present, together with the future land changes due to shoreline displacement were used to predict the situation in the future. These final estimates can be used in the assessment of risk for exposure to contaminated food for the future population in the area.  相似文献   

13.
Despite the ban on persistent organochlorines (OCs) in most of the developed nations, their usage continued until recently in many Asian developing countries including Vietnam, for agricultural purposes and vector-borne disease eradication programs. In this study, we collected human breast milk samples from the two big cities in Vietnam: Hanoi (n=42) and Hochiminh (n=44) and determined the concentrations of persistent OCs such as PCBs, DDT and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), chlordane compounds (CHLs) and tris-4-chlorophenyl-methane (TCPMe). The contamination pattern of OCs was in the order of DDTs > PCBs > HCHs > CHLs approximately HCB approximately TCPMe. Compilation of available data indicated that DDT residue levels in human breast milk from Vietnam were among the highest values reported for Asian developing countries as well as developed nations. This result suggests recent usage of DDTs in both north and south Vietnam. Interestingly, in both cities, the p,p'-DDT portion was higher in multiparas than those in primiparas. Considering the fact that the interval between the first and the second child of a mother in Vietnam is usually short, this result probably indicates continuous intake of DDTs in the population. Analysis of infant exposure to DDTs via breast milk suggested that the daily intake rates for number of individuals are close to or above the threshold for adverse effects which may raise concern on children health.  相似文献   

14.
Environmental Science and Pollution Research - At the global scale, urban agriculture is increasingly developing in cities due to demographic growth and sustainable food concerns. But, urban soils...  相似文献   

15.
Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.  相似文献   

16.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

17.
Hein L  Leemans R 《Ambio》2012,41(4):341-349
The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.  相似文献   

18.
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990–2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50–70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance.  相似文献   

19.
Environmental Science and Pollution Research - Wastewater application for irrigation is a traditional and economic tool in developing nations. Yet prolonged use of wastewater for agricultural...  相似文献   

20.
Data from weekly global measurements of nitrous oxide from 1981 to the end of 1996 are presented. The results show that there is more N2O in the northern hemisphere by about 0.7 +/- 0.04 ppbv, and the Arctic to Antarctic difference is about 1.2 +/- 0.1 ppbv. Concentrations at locations influenced by continental air are higher than at marine sites, showing the existence of large land-based emissions. For the period studied, N2O increased at an average rate of about 0.6 ppbv/year (approximately 0.2%/year) although there were periods when the rates were substantially different. Using ice core data, a record of N2O can be put together that goes back about 1000 years. It shows pre-industrial levels of about 287 +/- 1 ppbv and that concentrations have now risen by about 27 ppbv or 9.4% over the last century. The ice core data show that N2O started increasing only during the 20th century. The data presented here represent a comprehensive view of the present global distribution of N20 and its historical and recent trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号