首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用氢氧化钙、碳酸钠和硫化钠处理含锌废水,在溶液pH、锌离子浓度、颗粒粒径、颗粒Zeta电位、上清液浊度和污泥体积等指标测定的基础上,结合沉淀产物表征,探讨了沉淀剂用量对锌离子去除率的影响及沉淀机理。研究结果表明,n(Ca(OH)2∶n(Zn)=1.5,去除率达到最大值99.65%,n(Na2CO3)∶n(Zn)=1.5,去除率达到最大值99.89%,n(Na2S)∶n(Zn)=2.5,去除率达到最大值99.95%。X-射线衍射和热重分析表明,氢氧化钙与废水生成的沉淀物为碳酸钙和氧化锌,碳酸钠与废水生成的沉淀物为氧化锌和碱式碳酸锌,硫化钠与废水生成的沉淀物为硫化锌,这对污泥处理处置以及回收利用有指导意义。  相似文献   

2.
吕小梅  李继 《环境工程学报》2012,6(6):1885-1889
针对含络合剂的重金属废水,以含镍废水为例,探索了以气体硫化氢为结晶药剂的硫化镍异相结晶技术。废水以薄层液膜方式铺展于结晶载体表面,硫化氢气体穿过气液界面进入液相,硫离子与金属离子在载体表面异相结晶析出,重金属得以去除。以含酒石酸的模拟化学镀镍废水为对象,静态实验与动态实验均表明该技术具有可行性,硫化镍沉淀在结晶载体表面异相结晶析出,且附着稳定;络合剂对反应影响小;进水流速为4 mL/min,硫化钠流速为0.65 g/min,氮气流速为0.16 L/min时,出水镍浓度为49~53 mg/L,单位面积滤布表面结晶平均去除镍量为0.98 g/(m2.h)。  相似文献   

3.
This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.  相似文献   

4.
Mauchauffée S  Meux E 《Chemosphere》2007,69(5):763-768
Conventional methods for heavy metal removal from industrial wastewater involve a chemical precipitation. This process leads to sludges without any commercial value which are stored in specialized landfills. This paper describes a study on the possibility to perform selective precipitation of binary mixtures of metal cations using sodium decanoate. First, the solubility product of six metal decanoates is determined. These six compounds were prepared and controlled before determining their solubility in pure water at 20 degrees C. The solubility product K(sp) obtained for Cd, Cu, Mn, Ni, Pb and Zn decanoates are respectively 10(-11.69), 10(-14.65), 10(-10.16), 10(-9.17), 10(-16.05) and 10(-13.05). Additionally, the selective precipitation of binary mixtures was studied. Using pK(sp) values above, the solubility domain of each decanoate was established. The six superimposed curves allow prediction of the feasibility of separation. According to these curves, nine separations seem to be possible. In each case, precipitation was experimentally performed. The obtained results verify the reliability of this prediction tool. The feasibility of the selective precipitation of metal cations using sodium decanoate is clearly shown.  相似文献   

5.
Wang C  Pei Y 《Chemosphere》2012,88(10):1178-1183
This work investigated the characteristics and mechanisms of hydrogen sulfide adsorption by ferric and alum water treatment residuals (FARs) in solution. The results indicated that FARs had a high hydrogen sulfide adsorption capacity. pH 7 rather than higher pH (e.g. pH 8-10) was favorable for hydrogen sulfide removal. The Yan model fitted the breakthrough curves better than the Thomas model under varied pH values and concentrations. The Brunauer-Emmett-Teller surface area and the total pore volume of the FARs decreased after the adsorption of hydrogen sulfide. In particular, the volume of pores with a radius of 3-5 nm decreased, while the volume of pores with a radius of 2 nm increased. Therefore, it was inferred that new adsorption sites were generated during the adsorption process. The pH of the FARs increased greatly after adsorption. Moreover, differential scanning calorimetry analysis indicated that elemental sulfur was present in the FARs, while the derivative thermal gravimetry curves indicated the presence of sulfuric acid and sulfurous acid. These results indicated that both oxidization and ligand exchange contribute to the removal of hydrogen sulfide by FARs. Under anaerobic conditions, the maximum amount of hydrogen sulfide released was approximately 0.026 mg g(-1), which was less than 0.19% of the total amount adsorbed by the FARs. The hydrogen sulfide that was released may be re-adsorbed by the FARs and transformed into more stable mineral forms. Therefore, FARs are an excellent adsorbent for hydrogen sulfide.  相似文献   

6.
《Chemosphere》2008,70(11):1815-1820
This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.  相似文献   

7.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

8.
Xia LY  Gu DH  Tan J  Dong WB  Hou HQ 《Chemosphere》2008,71(9):1774-1780
The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.  相似文献   

9.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   

10.
Recycling EDTA solutions used to remediate metal-polluted soils   总被引:7,自引:0,他引:7  
The objective of this research was to investigate the recycling of ethylenediamine-tetraacetic acid (EDTA) used for the removal of trace metals from contaminated soils. We successfully used Na2S combined with Ca(OH)2 to precipitate the trace metals allowing us to recycle the EDTA. The results of batch and column leaching experiments show that both Ca-EDTA and Na-EDTA are powerful chelating agents with a similar soil remediation potential. The major advantage of Ca-EDTA is the preservation of soil organic matter. We found that Na2S was capable of separating the metals Cd, Cu and Pb from EDTA; however, the precipitation of Zn required the addition of Ca(OH)2. After reusing the reclaimed EDTA seven times, over a 14-day period, EDTA reagent losses ranged from 19.5% to 23.5%. Successive washing cycles enhanced the removal of trace metals from contaminated soils. The metal sulfide precipitates contain high concentrations of metals and could potentially be recycled.  相似文献   

11.
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.  相似文献   

12.
Zhou W  Imai T  Ukita M  Li F  Yuasa A 《Chemosphere》2007,66(5):924-929
Serious inhibition was found in the regular up-flow anaerobic sludge blanket (UASB) reactor in treating the evaporator condensate from a sulfite pulp mill, which contained high strength sulfur compounds. After applying the direct limited aeration in the UASB, the inhibition was alleviated gradually and the activity of the microorganisms was recovered. The COD removal rate increased from 40% to 80% at the organic loading rate of 8kgCODm(-3)d(-1) and a hydraulic retention time of 12h. Limited aeration caused no oxygen inhibition to the anaerobic microorganisms but instigated sulfide oxidization and H(2)S removal, which was beneficial to the methanogens. The experiment confirmed the feasibility of applying limited aeration in the anaerobic reactor to alleviate the sulfide inhibition. It also proved that the anaerobic system was actually aerotolerant. SEM observation showed that the predominant microorganisms partly changed from rod-shaped methanogens to cocci after the UASB reactor was aerated.  相似文献   

13.
硫化碱脱除二氧化硫工业烟气的可行性分析   总被引:7,自引:1,他引:6  
分析了国内外烟气脱硫的研究现状,论述了用硫化碱脱除二氧化硫化工业烟气在理论上和实验上的可能性。  相似文献   

14.
Yuan C  Weng CH 《Chemosphere》2006,65(1):88-96
An enhanced electrokinetic process for removal of metals (Cr, Cu, Fe, Ni, Pb, Zn) from an industrial wastewater sludge was performed. The electrokinetic experiments were conducted under a constant potential gradient (1.25 V cm(-1)) with processing fluids of tap water (TW), sodium dodecylsulfate (SDS) and citric acid (CA) for 5 days. Results showed that metal removal efficiency of heavy metals for EK-TW, EK-SDS and EK-CA systems are 11.2-60.0%, 37.2-76.5%, and 43.4-78.0%, respectively. A highest metal removal performance was found in EK-CA system. The removal priority of investigated metals from sludge by EK process was found as: Cu > Pb > Ni > Fe > Zn > Cr. The results of sequential extraction analysis revealed that the binding forms of heavy metals with sludge after electrokinetic process were highly depend upon the processing fluid operated. It was found that the binding forms of metals with sludge were changed from the more difficult extraction type (residual and sulfate fractions) to easier extraction types (exchangeable, sorbed, and organic fraction) after treatment by electrokinetic process. Results imply that if a proper treatment technology is followed by this EK process to remove metals more effectively, this treated sludge will be more beneficial for sludge utilization afterwards. Before it was reused, the risk associated with metals of more mobile forms to the environment need to be further investigated. The cost analysis was also evaluated for the investigated electrokinetic systems.  相似文献   

15.
In this study, biofiltration using a natural wood chip medium and a commercial biofiltration medium was evaluated for the removal of moderate concentrations of hydrogen sulfide (H2S) (up to 100 parts per million by volume [ppmv]) in the presence of significant concentrations of ammonia (NH3). These levels were chosen as representative of wastewater lift station emissions in the Brownsville, TX, area. NH3-removing portions of the biofilms may compete with H2S-removing portions and inhibit H2S removal. H2S process removal efficiencies for the commercial and natural media ranged from 90 to 96% depending on inlet loading and media type and bed height. Kinetic analysis of the H2S removal process followed apparent first-order reaction behavior. The average first-order reaction rates were 0.03 sec(-1) for the commercial medium and 0.09 sec(-1) for the natural medium. Pressure drops across the columns ranged from 0.41 in. H2O/ft for the commercial medium to 1.41 in. H2O/ft for the natural medium. NH3 gas levels of up to 80 ppmv did not affect the H2S removal process efficiency, and calculated kinetic rate constants for H2S removal remained almost the same. The NH3 gas also was removed simultaneously with the H2S up to 98% removal efficiency by the commercial medium.  相似文献   

16.
The absorption of hydrogen sulfide and methyl mercaptan by aqueous solutions of chlorine, sodium hydroxide, and chlorine plus sodium hydroxide was studied using a two-inch diameter absorption column packed with ¼ inch Intalox saddles. Absorption rates were noticeably affected by chemical reactions occurring in the aqueous chlorine and hydroxide media. These solutions were studied as a means of controlling sulfur-containing gas emissions from kraft paper mills. The absorption studies indicated that aqueous chlorine solutions at a pH above 12 were effective absorbents for hydrogen sulfide removal in absorption equipment designed to tolerate sulfur in suspension. The absorption of methyl mercaptan in aqueous chlorine solutions appeared to be impractical since dimethyl disulfide was apparently the only product formed and was stripped from the tower by the gas stream. Sodium hydroxide solution was an effective absorbent for both methyl mercaptan and hydrogen sulfide when hydroxide to sulfide or mercaptan feed ratios were greater than 1 or 1.8, respectively. The mercaptan absorption coefficient was approximately twice that for sulfide absorption.  相似文献   

17.
通过固定床实验系统研究烟气脱除零价汞的实验,首先研究了滤袋常用的聚苯硫醚(polyphenylene sulfide,PPS)以及活性炭纤维(activated carbon fiber,ACF)在不同温度、不同气体组分下负载V2O5-WO3/TiO2催化剂,对模拟燃煤烟气中零价汞(Hg^0)的脱除效果。然后对比研究了活性炭纤维协同滤袋常用纤维负载催化剂后,对模拟燃煤烟气中Hg^0的脱除性能。结果表明,在汞蒸气人口浓度为50μg/m^3,纯N2气氛下,当温度为25℃时,两者脱除率均能达到99%,当温度为200℃,负载催化剂的活性炭纤维脱除率在30%左右,PPS纤维仅为10%左右。在200℃情况下,模拟烟气的组分为N2+O2时,2种纤维的Hg^0脱除率提高了10%~20%,当在混合气体中添加0.01%。后,负载催化剂的PPS纤维Hg^0脱除率能达到80%,活性炭纤维Hg^0脱除率能达到98%。当温度为200℃,模拟烟气的组分为N2+O2+HCl时,不同性能掺炭纤维负载催化剂后Hg^0脱除率在69%~95%范围之间变化,其中PPS掺炭纤维对Hg^0脱除效率最高达到95%,因此,负载V2O5-WO3/TiO2催化剂的PPS掺炭纤维能在高温烟气中保持较高的Hg^0脱除率。  相似文献   

18.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

19.
The quantitative evaluation of chemical fraction of Co and Ni in the industrial fly ash by methods of five step sequential extraction was carried out in order to characterize metal mobility in environmental conditions. The research involved (i) water-soluble (pH=7), (ii) acid-soluble (pH=5), (iii) oxide, (iv) sulfide and (v) residue metal fractions. It was discovered, that the total extraction of the studied metals from fly ash to solutions take place in the following quantities Co - 35.5 and Ni - 153.0mgkg(-1). The investigations of chemical fractions proved that the subject metals occur mainly in fly ash as: oxide (Co - 7.0, Ni - 28.5mgkg(-1)) and residue (Co - 11.5, Ni - 42.5mgkg(-1)) as well as sulfide (Co - 8.5, Ni - 46.5mgkg(-1)). Low concentrations of metals for water-soluble fraction (Co - 0.7, Ni - 1.2mgkg(-1)) and acid-soluble fraction (Co - 4.5, Ni - 23.5mgkg(-1)) were observed. The fractions of Co and Ni leachable from the ash in environmental conditions contain: 24.0% (Co) and 23.3% (Ni) of metal total amount in the industrial fly ash. The obtained mobility parameter of Co and Ni can be applied to estimate the concentration increase of mobile and hardly mobile forms of these metals in soil polluted with the ash.  相似文献   

20.
Wu W  Xu J  Zhao H  Zhang Q  Liao S 《Chemosphere》2005,60(7):944-950
A practical and efficient disposal method for hydrodechlorination of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)2+i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号