首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 62 毫秒
1.
Summary. The scope of this work was to examine whether leaf constitutive secondary metabolites play a role in determining bacterial colonization of the phyllosphere. To this aim, we surveyed nineteen native or cultivated plant species that share a common bacterial pool in a North Mediterranean area, and estimated the size of total and ice nucleation active (INA) bacterial populations on their leaves. Large differences in the colonization of their phyllosphere were found; the population size of epiphytic bacteria ranged from 7.5 × 102 to 1 × 106 CFU/g fresh weight, in eucalypt and celery, respectively. Species native in Mediterranean-type climate areas, particularly those belonging to the group of aromatic plants, are characterized by scarce presence of INA bacteria. The antibacterial activity of essential oils, surface phenolics and leaf tissue extracts was also estimated against the INA strains P. syringae and E. herbicola, isolated from two of these plant species. E. herbicola proved more sensitive than P. syringae. Of the species examined, oregano [Origanum vulgare L. subsp. hirtum (Link.) Ietswaart], an aromatic plant, had the highest antimicrobial activity, whereas six species showed no activity at all. Further experiments were performed with oregano and bean (Phaseolus vulgaris L.) that represent two extremes in their secondary metabolite content. Both plants were inoculated with P. syringae. By the end of incubation, the bacterial population on bean plants was about 100 times higher than that on oregano leaves. Scanning electron micrographs showed that bacterial growth on oregano leaves was confined to sites away from glandular hairs. Results from the bacterial colonization survey together with those from the toxicity tests showed that all species rich in antibacterial secondary metabolites harbored low leaf bacterial populations. These results provide substantial evidence that leaf secondary metabolites function as constitutive defense chemicals against microbial invasions. However, the fact that species with non- or moderately active leaf secondary metabolites are not always highly colonized suggests mediation of other unknown factors, the contribution of which requires further investigation.  相似文献   

2.
In this study, a mannose-specific, homodimeric lectin from the seeds of Treculia africana was purified, characterized and its adverse effects were investigated in mice. The purification protocol involved anionic exchange chromatography on DEAE-Cellulose followed by gel filtration on Sephadex G-100. The hemagglutinating activity of lectin towards human erythrocytes was sensitive to inhibition by D-mannose. Treatment of the protein with EDTA exerted no inhibitory effect; however, analysis of metal content by atomic absorption spectroscopy revealed the presence of Cu2+, Fe3+, and Mg2+. The results obtained showed that the lectin possesses maximum hemagglutinating activity towards human erythrocytes activity over the pH range 3–7.2 and is relatively thermostable up to 50°C. Periodic acid Schiff's (PAS) reagent staining showed that the protein was non-glycosylated while its amino acid composition analysis revealed that the protein contained 155 residues per subunit. The subunit had a minimal molecular weight of 22,139 Daltons, while the native molecular weight was estimated to be 41,000 Daltons. The lectin was found to be moderately toxic to mice with an LD50 of 47.21 µg g?1 body weight while, histopathological analysis showed no treatment related effects in any of the organs examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号