首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments can act as a sink for contaminants in effluents from industrial and nuclear installations or when released from dumped waste. However, contaminated sediments may also act as a potential source of radionuclides and trace metals to the water phase due to remobilisation of metals as dissolved species and resuspension of particles. The marine mussel Mytilus edulis is a filter-feeding organism that via the gills is subjected to contaminants in dissolved form and from contaminants associated to suspended particles via the digestive system. In this paper the bioavailability of sediment-associated and seawater diluted Cs, Co, Cd and Zn radioactive tracers to the filtering bivalve M. edulis has been examined. The mussels were exposed to tracers diluted in ultrafiltered (<10 kDa) seawater (Low Molecular Mass form) or to tracers associated with sediment particles from the Stepovogo Fjord at Novaya Zemlya in short-term uptake experiments, followed by 1-month depuration experiments in flow-through tanks. A toxicokinetic model was fitted to the uptake and depuration data, and the obtained parameters were used to simulate the significance of the two uptake pathways at different suspended sediment loads and sediment-seawater distribution coefficients. The results of the model simulations, assuming steady state conditions, suggest that resuspended particles from contaminated sediments can be a highly significant pathway for mussels in the order 109Cd ≌ 65Zn < 134Cs < 60Co. The significance increases with higher suspended sediment load and with higher Kd. Furthermore, the experimental depuration data suggest that Cs is retained longer and Co, Cd and Zn shorter by the mussels when associated with ingested sediments, than if the metals are taken up from the low molecular mass (LMM) phase.  相似文献   

2.
Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption.  相似文献   

3.
Tissues of foetus-mother pairs of common dolphins (Delphinus delphis) stranded along the French coasts (Bay of Biscay and English Channel) were analysed for their Cd, Cu, Hg, Se and Zn contents. In the kidneys, foetal Cd levels were extremely low, and strong relationships between Cu and Zn suggested the involvement of metallothioneins since early foetal life. The results also indicated a limited maternal transfer of Hg during pregnancy since levels in the tissues of foetuses were below 1 microg g(-1) w.wt. However, hepatic Hg levels in foetuses increased with body length, and were also proportionate to maternal hepatic, renal and muscular Hg levels. Lastly, affinities between Hg and Se in tissues would participate in Hg neutralisation in both mothers--through tiemannite granules--and fetuses--through reduced glutathione--counteracting the toxic effects linked to the particularly high quantities of methyl-Hg to which marine mammals are naturally exposed.  相似文献   

4.
Inter-plant concentration ratios (IPCR) [Bqg(-1)(137)Cs in coral atoll tree food crops/Bqg(-1)(137)Cs in leaves of native plant species whose roots share a common soil volume] can replace transfer factors (TF) to predict (137)Cs concentration in tree food crops in a contaminated area with an aged source term. The IPCR strategy has significant benefits relative to TF strategy for such purposes in the atoll ecosystem. IPCR strategy applied to specific assessments takes advantage of the fact that tree roots naturally integrate (137)Cs over large volumes of soil. Root absorption of (137)Cs replaces large-scale, expensive soil sampling schemes to reduce variability in (137)Cs concentration due to inhomogeneous radionuclide distribution. IPCR [drinking-coconut meat (DCM)/Scaevola (SCA) and Tournefortia (TOU) leaves (native trees growing on all atoll islands)] are log-normally distributed (LND) with geometric standard deviation (GSD)=1.85. TF for DCM from Enewetak, Eneu, Rongelap and Bikini Atolls are LND with GSDs of 3.5, 3.0, 2.7, and 2.1, respectively. TF GSD for Rongelap copra coconut meat is 2.5. IPCR of Pandanus fruit to SCA and TOU leaves are LND with GSD=1.7 while TF GSD is 2.1. Because IPCR variability is much lower than TF variability, relative sampling error of an IPCR field sample mean is up 6- to 10-fold lower than that of a TF sample mean if sample sizes are small (10-20). Other IPCR advantages are that plant leaf samples are collected and processed in far less time with much less effort and cost than soil samples.  相似文献   

5.
Transfer and toxic effects of two cadmium (Cd) forms, inorganic (CdCl2 dosed rat food) or organic (contaminated snail-based rat food) were studied in Wistar rat. Cd concentrations in rat food were 0 and 2.5 microg Cd g(-1) for both inorganic and organic forms and a high concentration of 100 microg Cd g(-1) was also tested for the inorganic form. Rats were exposed for four weeks to contaminated food. Both forms of Cd were bioavailable to rats, with a percentage of transfer from food to rats of around 1% for all contaminated groups. Cd concentrations in rat tissues increased with increasing Cd concentrations in the food. Rats fed with organic form of Cd accumulated significantly more Cd in the main organ for Cd toxicity, the kidney, than those eating the inorganic form. Survival was not affected for any rat group but a decrease in growth and food consumption was observed for the inorganic form. As a defence system against Cd toxicity, rats increased their metallothionein (MT) synthesis at the highest Cd concentration in the target organs (kidney, liver and small intestine) and even did the same at low Cd concentrations (2.5 microg Cd g(-1)) in the kidney. At this low Cd concentration, MT induction was lower in the small intestine of rats ingesting organic Cd than those ingesting inorganic Cd. Bioavailability of organic and inorganic forms of Cd was similar, but subsequent Cd distribution within organs was different. This quantification of the trophic transfer of both inorganic and organic forms of a toxicant is a basis for a better assessment of the fate and effects of chemicals in food webs.  相似文献   

6.
The uptake and release of 109Cd, 51Cr, 60Co, 59Fe, 54Mn, and 65Zn were studied using end-member waters and particles from Port Jackson estuary, Australia. The kinetics of adsorption and desorption were studied as a function of suspended particulate matter (SPM) loading and salinity. Batch experiments showed that the position and slope of the pH edges are dependent on the metal and on the salinity of the water (except for Mn). The general effect of salinity was to move the adsorption edge to higher pH values, with the greatest change being found for Cd. Most of the metals showed relatively simple kinetics with an increase in uptake as a function of time and suspended particle concentrations. The time dependence of Cd uptake was more complex, with an initial adsorption phase being followed by strong mobilization from the suspended sediments, explained by chlorocomplexation and competition with seawater major cations. The reversibility of the sorption decreased in the order Co>Mn>Zn>Cd>Fe>Cr. The percentage of adsorbed metal released in desorption experiments was greater in seawater than freshwater for Cd, Zn, and Co. These results are important in understanding the cycling of pollutants in response to pH, salinity, and particle concentrations in estuarine environments. In addition, they give valuable insight into the important mechanisms controlling the partitioning of heavy metals in the Port Jackson estuary.  相似文献   

7.
The concentrations of (238)Pu and (239+240)Pu in water samples and suspended particulate fractions, as well as in colloidal fraction from the southern Baltic Sea are presented. The (239+240)Pu concentration in surface seawater samples fall within range from 5.2 mBq.m(-3) for Gdańsk Bay to 150 mBq.m(-3) for Pomeranian Bay, most of which (from 52 to 96%) constituted filterable forms (相似文献   

8.
Volcanoes produce and release large amounts of toxicants, and the concentration of metals in hair can be used as a biomarker of exposure to trace metals. In order to investigate whether humans exposed to volcanic emissions demonstrate higher concentrations of essential and non-essential trace metals, scalp hair of men (3-89 years) living in two areas of the Azores, one exposed to volcanic emissions and the other not, was sampled, and their content in Cd, Cu, Pb, Rb, Se, and Zn was quantified by using High Resolution Inductively Coupled Plasma Mass Spectrometry. In average, men exposed to volcanic emissions presented higher concentrations of Cd (96.9 ppb), Cu (16.2 ppm), Pb (3417.6 ppb), Rb (216.3 ppb), and Zn (242.8 ppm), but not Se (469.6 ppb). Also, strong and significant correlations were found between Cd-Rb and Pb-Rb in the exposed men. In conclusion, humans living chronically exposed to volcanic emissions show high concentrations of essential and non-essential trace metals in scalp hair, and is suggested that this type of exposure may be as harmful as living close to industrial facilities.  相似文献   

9.
This study presents a transnational groundwater survey of the 62,000 km(2) Mekong delta floodplain (Southern Vietnam and bordering Cambodia) and assesses human health risks associated with elevated concentrations of dissolved toxic elements. The lower Mekong delta generally features saline groundwater. However, where groundwater salinity is <1 g L(-)(1) Total Dissolved Solids (TDS), the rural population started exploiting shallow groundwater as drinking water in replacement of microbially contaminated surface water. In groundwater used as drinking water, arsenic concentrations ranged from 0.1-1340 microg L(-)(1), with 37% of the studied wells exceeding the WHO guidelines of 10 microg L(-)(1) arsenic. In addition, 50% exceeded the manganese WHO guideline of 0.4 mg L(-)(1), with concentrations being particularly high in Vietnam (range 1.0-34 mg L(-)(1)). Other elements of (minor) concern are Ba, Cd, Ni, Se, Pb and U. Our measurements imply that groundwater contamination is of geogenic origin and caused by natural anoxic conditions in the aquifers. Chronic arsenic poisoning is the most serious health risk for the ~2 million people drinking this groundwater without treatment, followed by malfunction in children's development through excessive manganese uptake. Government agencies, water specialists and scientists must get aware of the serious situation. Mitigation measures are urgently needed to protect the unaware people from such health problems.  相似文献   

10.
Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000 km2 needs local assessment and eventual remediation action.  相似文献   

11.
To enlarge the possibilities of using organisms of the soil fauna to assess the bioaccumulative potential of chemicals, the kinetic of soil cadmium (Cd) transfer to the terrestrial gastropod Helix aspersa was investigated under laboratory conditions during a long-term experiment (6 months). During the exposure phase (3 months), juvenile snails were subjected to three different concentrations of Cd spiked in artificial ISO soil (ISO 0, 20 and 100 mg Cd kg(-1)) and to a field soil (ME4) industrially contaminated by 20 mg Cd kg (-1). For both soils, internal steady-state Cd concentrations were reached in the viscera of the snails, the main storage organ for Cd, after 2 weeks of exposure whatever the Cd concentration in soil. The equilibrium concentrations in the viscera were 0.7 (+/-0.1), 11.3 (+/-2.4), 73.3 (+/-4.8) and 6.3 (+/-1.3) mg Cd kg(-1) dry mass for ISO 0, ISO 20, ISO 100 and ME4, respectively. During the depuration phase (3 months), from 0 to 52% of the accumulated Cd in the viscera were removed by excretion or relocation in the foot. However, the snails were not able to depurate down to initial concentrations. Data were modelled by integrating a specific growth rate constant into one-compartment toxicokinetic models. This allowed the calculation of Cd uptake rates that can be used as indicators of metal bioavailability. Since this parameter was found to be lower for snails exposed to the field soil ME4, we concluded that lower Cd bioavailability in this field soil was responsible of the lower transfer to the snails compared to the ISO 20 soil, even though they were polluted to similar extents. Internal validation showed that the toxicokinetic models could be applied for predictive purposes, promising for the development of a bioaccumulation directive for terrestrial environment.  相似文献   

12.
Understanding the processes that determine the solid-liquid partitioning (K(d) value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K(d) values for (75)Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K(d) values were generally in the range 50-500 L kg(-1), with mean soil K(d) increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in (75)Se K(d) value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on (75)Se K(d) value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled (75)Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment.  相似文献   

13.
These experiments were designed to look at the cellular effects in key organs in Atlantic salmon (Salmo salar) after exposure in vivo to radiation and subtoxic levels of aluminum (Al) and cadmium (Cd), alone or in combination. Salmon (25g) were exposed to a single 0.5Gy dose of gamma-irradiation in water containing Cd, Al or Cd+Al. Three fish per group were sacrificed after 1h and the liver, pronephros, fin and gill of each was dissected. Small explants of each tissue were set up. After 2 days, the culture medium was harvested and filtered then placed on a reporter cell line for determination of stress signal activity (bystander effects). Radiation in combination with Cd and/or Al, caused bystander effects in tissues harvested from in vivo exposed salmon. The effects vary between different organs and are not consistently additive or synergistic for a given treatment. Tissue type appears to be critical. Liver cultures produce a toxic factor which is lethal to reporter cells, and therefore no liver data could be obtained. It is hoped that this stress signal response will prove to be a useful indicator of environmental stress in species inhabiting aquatic ecosystems.  相似文献   

14.
This study aimed to (i) evaluate whether the K(d) value of selenium is dependent upon the soil microbial activity and (ii) define the limitation of the use of the K(d) concept to describe selenium behaviour in soils when assessing the long-term radiological waste disposal risk. K(d) coefficients, as well as information on selenite speciation in the soil-solution, were derived from short- and long-term batch experiments with a calcareous silty clay soil in various microbial states. Soil microbial activity induced (i) an increase of the K(d) value from 16 l kg(-1) in sterile conditions to 130 l kg(-1) when the soil was amended with glucose and nitrate, and (ii) changes in selenium speciation both in the solution (presence of seleno-species other than free Se(IV)) and in the solid phase (Se linked to microorganisms). Although the K(d) coefficient adequately reflects the initial fractionation between soil-solid and soil-solution, it does not allow for speciation and microbial processes, which could affect reversibility, mobility and the long-term accumulation and uptake into crops.  相似文献   

15.
Uptake and depuration of (131)I into winkles through consumption of the diatom Skeletonema costatum is described. The work follows on from previous studies that investigated the uptake of iodine into winkles from seawater and seaweed. Incorporation of (131)I in S. costatum from labelled seawater followed linear first-order kinetics with an uptake half-time of 0.40 days. Iodine uptake in winkles from labelled S. costatum also followed linear first-order kinetics, with a calculated equilibrium concentration (C(infinity)) of 42Bqkg(-1) and a transfer factor (TF) of 1.1x10(-4) with respect to labelled diatom food. This TF is lower than that observed for uptake of (131)I in winkles from labelled seaweed. For the depuration stage, a biphasic sequence with biological half-lives of 1.3 and 255 days was determined. The first phase is biokinetically important, given that winkles can lose two-thirds of their activity during that period. This study shows that, whilst winkles can obtain radioactive iodine from phytoplankton consumption, they do not retain the majority of that activity for very long. Hence, compared with other exposure pathways, such as uptake from seawater and macroalgae, incorporation from phytoplankton is a relatively minor exposure route.  相似文献   

16.
High metal contents in edible mushrooms growing in severely contaminated industrial areas pose an important toxicological risk. In the presented study, trace element (Pb, Cd, Zn, Cu, Ag, As, Se) contents were determined in caps and stipes of three different edible mushroom species (Boletus edulis Bull. Fr., Xerocomus badius Fr. Gilb., Xerocomus chrysenteron Bull. Quél.). Additionally, information about the chemical fractionation of metals in separate soil horizons and Pb isotopic data from soils and fruiting bodies allowed a more detailed insight on the uptake mechanisms of metals by the studied mushroom species. Total metal and metalloid concentrations in the organic soil horizons reached 36234 mg Pb kg(-1); 11.9 mg Cd kg(-1); 519 mg Zn kg(-1); 488 mg Cu kg(-1); 25.1 mg Ag kg(-1); 120 mg As kg(-1) and 5.88 Se mg kg(-1). In order to evaluate the accumulation capacity of the studied species, bioconcentration factors (BCF) were calculated for separate trace elements. For selected metals (Pb, Cd, Zn, Cu), a modified BCF calculation (using EDTA-extractable concentrations of metals in soil) was proposed. High contents of Pb (up to 165 mg kg(-1)) and Cd (up to 55 mg kg(-1)) exceeded all the regulatory limits in all the studied species. This was also the case for Se (up to 57 mg kg(-1)) in B. edulis. Intensive consumption of this species grown in such polluted areas can therefore pose toxicological risks for human health. A novel finding was that X. badius can act as an Ag accumulating species when grown at polluted sites due to the high concentrations of Ag (up to 190 mg kg(-1)) in caps. Pb isotopic data showed that Pb originating from the recent air pollution control residues is present mainly in the exchangeable/acid-extractable fraction of the organic horizons and is taken up by fruiting bodies; especially in the case of B. edulis, where fast Pb accumulation occurs. Due to the high species-dependent variations of metal contents, the studied mushrooms are not suitable as bioindicators of environmental pollution.  相似文献   

17.
Three hundred samples of Mytilus galloprovincialis were collected from five stations (north, south, east, west and centre) of Lake Faro to evaluate the concentrations of organochlorine compounds and heavy metals. Quantitative determinations of organochlorine pesticides and PCBs were made by GC-ECD and confirmed with GC-MS. Concentrations of "essential" (Cu, Se and Zn) and "toxic" (As, Cd, Hg and Pb) metals were determined by an atomic absorption spectrophotometer. The results obtained show the low residue levels of p,p'-DDE in six samples of M. galloprovincialis from southern (7.00-11.00 ng/g w.w. and 148.3-275 ng/g l.w.) and western (7.60-15.37 ng/g w.w. and 126.7-256.2 ng/g l.w.) areas of Lake Faro. No appreciable residues of PCBs were found in any of the samples examined. Zn concentrations (range 11.0-18.5 microg/g w.w.) were higher than Cu (range 188.3-396.0 ng/g w.w.) and Se (range 93.5-288.9 ng/g w.w.) in all areas of origin. Cd (range 41.9-63.8 ng/g w.w.), Pb (range 64.8-93.0 ng/g w.w.) and Hg levels (range 5.7-13.1 ng/g w.w.) showed lower concentrations than permitted MRLs. The As levels were below detection limits for the all mussel samples. In conclusion, the absence of PCBs, the low levels of p,p'-DDE, the concentrations of Cd, Hg and Pb below permitted MRLs in M. galloprovincialis, used as a "biological indicator", show that Lake Faro is not at contamination risk from these contaminants and moreover is free from health problems for the consumer of mussel products.  相似文献   

18.
A greenhouse pot experiment was conducted to study the influence of potassium fertilizers in different forms and rates on cadmium (Cd) uptake by two cultivars of spring wheat (Triticum aestivum, L.): Brookton and Krichauff. Potassium fertilizers were added to soil at four levels: 0, 55, 110 and 166 mg K kg(-1) soil as KNO(3) (N), KCl (C) or K(2)SO(4) (S). CdCl(2) was added to all the treatments at a uniform rate equivalent to 15 mg Cd kg(-1) soil. Plant shoot and root dry weights (DW) of both cultivars were reduced significantly by the addition of K-fertilizer in C and S treatments but there were only marginal changes in the N treatments. The Cd concentrations in shoots and whole plants increased significantly (P<.001) with increasing K addition, from 37.5 to 81.4 mg kg(-1) and from 42.9 to 86.8 mg kg(-1) for Brookton and Krichauff, respectively. However, no obvious effect was observed in the N treatments, except for the highest K level (K3) where there was a sharp increase in Cd concentration compared to the lower additions. Forms of K-fertilizers significantly influenced the Cd concentrations in plant shoots and roots (P<.001), but there was no significant difference between C and S treatments. This experiment showed that anions Cl(-) and SO(4)(2-) increase Cd uptake by plants, which can be interpreted as Cl(-) and SO(4)(2-) complexing readily with Cd(2+) and thereby increasing the bioavailability of Cd(2+) in soils. The effect of potassium itself on plant uptake of Cd was also observed. We suggest that when applying potassium fertilizer to Cd-contaminated soils, the forms and rates should be considered.  相似文献   

19.
Previous studies investigating the exposure to metal(loid)s of populations living in the Panasqueira mine area of central Portugal found a higher internal dose of elements such as arsenic, chromium, lead, manganese, molybdenum and zinc in exposed individuals. The aims of the present study were to evaluate the extent of genotoxic damage caused by environmental and occupational exposure in individuals previously tested for metal(loid) levels in different biological matrices, and the possible modulating role of genetic polymorphisms involved in metabolism and DNA repair. T-cell receptor mutation assay, comet assay, micronucleus (MN) test and chromosomal aberrations (CA) were performed in a group of 122 subjects working in the Panasqueira mine or living in the same region. The modifying effect of polymorphisms in GSTA2, GSTM1, GSTP1, GSTT1, XRCC1, APEX1, MPG, MUTYH, OGG1, PARP1, PARP4, ERCC1, ERCC4, and ERCC5 genes was investigated. Significant increases in the frequency of all biomarkers investigated were found in exposed groups, however those environmentally exposed were generally higher. Significant influences of polymorphisms were observed for GSTM1 deletion and OGG1 rs1052133 on CA frequencies, APEX1 rs1130409 on DNA damage, ERCC1 rs3212986 on DNA damage and CA frequency, and ERCC4 rs1800067 on MN and CA frequencies. Our results show that the metal(loid) contamination in the Panasqueira mine area induced genotoxic damage both in individuals working in the mine or living in the area. The observed effects are closely associated to the internal exposure dose, and are more evident in susceptible genotypes. The urgent intervention of authorities is required to protect exposed populations.  相似文献   

20.
Variations in either food content or dietary habit affect dietary intake of trace contaminants. Trace contaminants enter the human food chain through many environmental pathways, including contamination of water used for drinking or irrigation, sludge used on cropland, fertilizers and other agricultural chemicals, chemicals leached from disposal sites to water, or airborne deposition on soil, water, or crops. A flow chart (Fig. 1) summarizes these pathways.Dietary exposure to environmental trace contaminants places some segments of the U.S. population at substantially higher risk than others. A methodology to calculate population distribution curves for dietary intake of trace contaminants is presented in this report, using cadmium (Cd) as the specific example. This methodology can be applied both to calculate the distribution of daily individual intake of trace contaminants, as well as to estimate the size of the potentially at-risk population. The methodology is developed with both a stochastic approach and a matrix approach. The matrix approach is coded as program SCOPE, and the stochastic as program MONTE.The dietary habits of the U.S. population were determined by using computer codes to analyse and synthesize an array of dietary data. The 15- to 20-yr-old male population was selected for analysis because this group has the largest gram-caloric intake of any age-sex classification. Data from the U.S. Department of Agriculture and the Food and Drug Administration were analyzed to define Cd concentration distribution for 34 food categories, into which 1880 food items were classified. Food consumption frequency histograms were generated with this information, using data synthesis routines and SCOPE.A 1974 FDA survey of metal concentrations in selected foods at 71 U.S. sampling sites yielded tabular, truncated frequency histograms for Cd concentrations in 32 of the food categories studied. Histograms were then constructed by integrating consumption and Cd concentration for each food category for the total diet.The World Health Organization (WHO) recommended in 1972 a tolerable limit of Cd intake of approximately 70 μg per day. A comparison of SCOPE and MONTE total diet Cd intake frequency histograms indicates the likelihood of high Cd intake, at-rick populations. SCOPE results predict that approximately 13% of the 15- to 20-yr-old males studied ingest Cd at a rate greater than 70 μg per day. MONTE predicts that 14%, with a 12–17% range, ingest amounts greater than the WHO-recommended limit on a daily basis. This percentage represents a potential at-risk population. The actual at-risk population would be those persons who consistently ingest more than 70 μg/day.The percentage of the population projected to ingest more than 70 μg of Cd per day needs to be defined by geography, ethnicity, race, and dietary preference in order to fully evaluate Cd intake risks and to set parameters for epidemiological surveys needed for confirmation. Assuming validity for this methodology, there is justification for preventing significant increases in Cd dietary intake by way of man's activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号