首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth rates and development times were determined for nauplii of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total naupliar development time was short: 3 to 4 d inshore and 4 to 5 d offshore. Mean instantaneous growth rates (g) ranged from as high as 0.90 d−1 for Parvocalanuscrassirostris to as low as 0.41 d−1 for Corycaeus spp. In general, nauplii of cyclopoid copepods appeared to grow more slowly than those of calanoids of the same size. Naupliar growth rates were significantly related to body size (r 2 = 0.43 to 0.50), but were unrelated to chlorophyll concentration in any measured size-fraction. This suggests that nauplii are generally not limited by resources, but are growing at their maximum temperature and size-dependent rates. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

2.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

3.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

4.
Egg production and development rates of Centropages typicus (Krøyer) were studied in the laboratory under carying food and temperature conditions. Egg production rates in the laboratory ranged from 0 to 124 eggs female-1 d-1 and increased with food concentration up to a critical food concentration (Pc) above which egg production was constant. Egg production rates were influenced by temperature, with more eggs being produced at 15°C than at 10°C. Thalassiosira weisflogii and Prorocentrum micans were determined to be equally capable of supporting egg production at concentrations above Pc at 15°C. Rate of egg production was independent of adult female size when food and temperature were constant. Egg production rates of freshly captured females ranged from 0 to 188 eggs female-1 d-1 and were higher in April and May than in June or July. Hatching rates of eggs increased with increased temperature; 95% of the eggs at 15°C hatched within 48 h, while only 8% of the eggs at 10°C hatched within 48 h. Development rates, determined at 10°C in excess concentrations of T. weisflogii, were 23.0 d from egg release to copepodid state I, 27.0 d to stage II, 29.5 d to stage III, 32.2 d to stage IV, 38.5 d to stage V and 49 d to adulthood based on the average time required for 50% of the organisms in an experiment to attain a given stage. Adult males were usually observed 2 to 4 d before adult females, and therefore have a slightly faster rate of development. The effects of temperature, food type and food concentration on egg production and the seasonal appearances of diatoms in the New York Bight may account for the observed seasonal cycles in abundance of C. typicus in these coastal waters.  相似文献   

5.
Metabolic rates (oxygen consumption, ammonia excretion, phosphate excretion) have been calculated as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using multiple regression. The metabolic data used for this analysis were species structured, collected from Arctic to Antarctic seas (temperature range: -1.7°C to 29.0°C). The data were further divided into geographical and/or seasonal groups (35 species and 43 data sets for oxygen consumption; 38 species and 58 data sets for ammonia excretion; 22 species and 31 data sets for phosphate excretion). The results revealed that the variance attributed to body mass and temperature was highest (93-96%) for oxygen consumption rates, followed by ammonia excretion rates (74-80%) and phosphate excretion rates (46-56%). Among the various body mass units, the best correlation was provided by the nitrogen unit, followed by the dry weight unit. The calculated Q10 values varied slightly according to the choice of body mass units; overall ranges were 1.8-2.1 for oxygen consumption rates, 1.8-2.0 for ammonia excretion rates and 1.6-1.9 for phosphate excretion rates. The effects of body mass and temperature on the metabolic quotients (O:N, N:P, O:P) were insignificant in most cases. Although the copepod metabolic data used in the present analysis were for adult and pre-adult stages, possible applications of the resultant regression equations to predict the metabolic rates of naupliar and early copepodite stages are discussed. Finally, global patterns of net growth efficiency [growth (growth+metabolism)-1] of copepods were deduced by combining the present metabolic equation with Hirst and Lampitt's global growth equation for epipelagic marine copepods.  相似文献   

6.
7.
Plant growth rates and seed size: a re-evaluation   总被引:1,自引:0,他引:1  
Small-seeded plant species are often reported to have high relative growth rate or RGR. However, because RGR declines as plants grow larger, small-seeded species could achieve higher RGR simply by virtue of their small size. In contrast, size-standardized growth rate or SGR factors out these size effects. Differences in SGR can thus only be due to differences in morphology, allocation, or physiology. We used nonlinear regression to calculate SGR for comparison with RGR for 10 groups of species spanning a wide range of life forms. We found that RGR was negatively correlated with seed mass in nearly all groups, but the relationship between SGR and seed mass was highly variable. We conclude that small-seeded species only sometimes possess additional adaptations for rapid growth over and above their general size advantage.  相似文献   

8.
9.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

10.
One unexplored area in sexual conflict studies is the female physiological costs and possible resource reallocation that accompany evolutionary costs due to male harassment. Using females of the damselfly Hetaerina americana, I first investigated whether male harassment affected female mating rate and survival and explored whether such effects induced a resource allocation from immunity (in the form of phenoloxidase activity) and muscular fat reserves to egg number and size. Using two seasons that differed in male harassment, it was found that the higher the male harassment, the fewer are the female matings and the lower is the female survival. These results were corroborated using an experimental approach in which a situation of high male harassment was induced. It was also found that when the first mating takes place and at high male harassment, females had more reduced phenoloxidase activity and fat reserves and tended to lay most of the eggs they produce in their lifetime and these were considerably large. However, at low male harassment, egg number and size were more equally produced across matings. Females under high male harassment seemed to suffer the survival costs but may show a plastic evolutionary response of reallocating resources to egg traits to maximize fitness.  相似文献   

11.
J. R. Dolan 《Marine Biology》1991,111(2):303-309
Growth rates of microphagous ciliates (forms which feed primarily on picoplankton-sized prey) were estimated, along with rates of their consumption by copepods, in shipboard experiments conducted in the mesohaline portion of Chesapeake Bay, USA, under contrasting water column conditions in April, June, and August 1987. Estimates were based on temporal changes in cell densities in size-fractionated water samples incubated under in situ conditions. In April, at low temperatures (7 to 10°C) and with oxygen present throughout the water column, similar generation times of ca. 1 to 1.5 d were estimated for surface and deep water (24 m) ciliate populations. In June, water was anoxic below 12 m and a distinct anoxic microphage community grew at about twice the rate of the surface community with generation times of ca. 7 and 14 h, respectively. In August, bottom water was again anoxic, but the sameStrobilidium sp. dominated both surface and deep waters with low or no growth apparent in anoxic waters and a generation time of ca. 8 h in surface waters. Copepod (primarilyAcartia tonsa Dana nauplii) clearance rates for microphagous ciliates in surface waters were 0.11, 0.56, and 0.53 ml h–1 copepod–1 for April, June and August, respectively. Calculation of removal rates, based on average densities, indicated that from 34 to 200% of surface waters were cleared d–1 of microphagous ciliates by copepods.  相似文献   

12.
Seasonally recurrent and persistent hypoxic events in semi-enclosed coastal waters are characterized by bottom-water dissolved oxygen (d.o.) concentrations of < 2.0 ml l−1. Shifts in the distribution patterns of zooplankters in association with these events have been documented, but the mechanisms responsible for these shifts have not been investigated. This study assessed interspecific differences in responses to hypoxia by several species of calanoid copepods common off Turkey Point, Florida, USA: Labidocera aestiva (Wheeler) (a summer/fall species), Acartia tonsa (Dana) (a ubiquitous year-round species), and Centropages hamatus (Lilljeborg) (a winter/spring species). Under conditions of moderate to severe hypoxia 24-h survival experiments were conducted for adults and nauplii of these species from August 1994 to October 1995. Experiments on adults used a flow-through system to maintain constant d.o. concentrations. Adults of A. tonsa showed no decline in survival with d.o. as low as 1.0 ml l−1, sharp declines in survival at d.o. = 0.9 to 0.6 ml l−1, and 100% mortality with d.o. = 0.5 ml l−1. Adults of L. aestiva and C. hamatus were more sensitive to oxygen depletion: both species experienced significant decreases in survival for d.o. = 1.0 ml l−1. Nauplii of L. aestiva and A. tonsa showed no significant mortality with d.o. = 1.1 to 1.5 ml␣l−1 and d.o. = 0.24 to 0.5 ml l−1, respectively. In addition, experiments investigating behavioral avoidance of moderate to severe hypoxia were carried out for adults of all three species. None of the three species effectively avoided either severely hypoxic (d.o. < 0.5 ml l−1) or moderately hypoxic (d.o. ≈ 1.0 ml l−1) bottom layers in stratified columns. These results suggest that in␣nearshore areas where development of zones of d.o. < 1.0 ml l−1 may be sudden, widespread, or unpredictable, patterns of reduced copepod abundance in bottom waters may be due primarily to mortality rather than avoidance. Received: 31 August 1996 / Accepted: 24 September 1996  相似文献   

13.
I. Buttino 《Marine Biology》1994,119(4):629-634
Estimates of daily fecundity, hatching success and fecal pellet production are reported for Acartia clausi females exposed for 10 d to low levels of phenol and ammonia. Copepods were collected in 1991 and 1992 from a southern coastal area of the Mar Grande of Taranto (southern Italy). A reduction in egg numbers and fecal pellet production was observed for females after 8 d of exposure to 500 g l-1 phenol concentration. Ammonia (120 g l-1) produced a significant increment in egg production, but hatching success was reduced by about 50% after nine exposure days. A. clausi was more sensitive to ammonia than phenol at high concentrations (24-h LC50 phenol-32.26 mg l-1; 24-h LC50 ammonia=0.91 mg l-1). At low concentrations, only long-term exposure to phenol determined a reduction in fecundity.  相似文献   

14.
The relative importance of biotic, abiotic, and stochastic processes in structuring ecological communities continues to be a central focus in community ecology. In order to assess the role of phylogenetic relatedness on the nature of biodiversity we first quantified the degree of phylogenetic niche conservatism of several plant traits linked to plant form and function. Next we quantified the degree of phylogenetic relatedness across two fundamental scaling dimensions: plant size and neighborhood size. The results show that phylogenetic niche conservatism is likely widespread, indicating that closely related species are more functionally similar than distantly related species. Utilizing this information we show that three of five tropical forest dynamics plots (FDPs) exhibit similar scale-dependent patterns of phylogenetic structuring using only a spatial scaling axis. When spatial- and size-scaling axes were analyzed in concert, phylogenetic overdispersion of co-occurring species was most important at small spatial scales and in four of five FDPs for the largest size class. These results suggest that phylogenetic relatedness is increasingly important: (1) at small spatial scales, where phylogenetic overdispersion is more common, and (2) in large size classes, where phylogenetic overdispersion becomes more common throughout ontogeny. Collectively, our results highlight the critical spatial and size scales at which the degree of phylogenetic relatedness between constituent species influences the structuring of tropical forest diversity.  相似文献   

15.
Egg production rate of the copepod Acrocalanus inermis was measured at 3 stations in south Kaneohe Bay, Hawaii in August 1977 and July–October 1979. The egg production rates were significantly variable spatially, but temporal variability over a time scale of weeks was larger than spatial variability. In three experiments, egg production rates were correlated with ambient concentrations of particulate matter, a crude estimate of food concentration. Most values for egg production rates ranged between 5 and 16.9 eggs female-1 d-1.  相似文献   

16.
Toxic cyanobacteria occur in fresh, brackish, and marine waters worldwide. Harmful effects of intact cyanobacterial cells on zooplankton are well known, but only a few studies have focused on the effects of dissolved toxins. We investigated experimentally how the cyanobacterial toxins anatoxin-a, microcystin-LR, and nodularin affect estuarine calanoid copepods, by monitoring effects on egg hatching and survival in Eurytemora affinis. We also investigated effects of nodularin on the survival of Acartia bifilosa. All exposures were carried out using purified dissolved toxins. We found that the egg hatching was unaffected by these toxins, whereas survival was marginally affected by high concentrations of anatoxin-a and nodularin. For microcystin-LR, we found reduced survival at concentrations that were lower than those known to affect other meso-zooplankton.  相似文献   

17.
A mathematical model of the individual budget of a spawning female of the copepod Acartia grani (Sars) has been used to simulate the time-scale of egg production over various external forcings (or inputs) of food fluctuation conditions. The budget matter in the body of the copepod females is distributed through four compartments: the whole digestive tract (globally named as gut), the hemolymph (which include the body fluid with available nutriments for the organs), the structural body weight, and the gonad. This small calanoid species does not carry lipid reserves but cumulate some labile reserves in its body, according to food availability. The model results show how the continuous spawning varies with food fluctuations, and suggest the mechanisms inducing the delay of response to starvation by using the metabolic reserves. Three different patterns in egg production response are observed: food fluctuations with frequencies below 12 h have no effect on egg production; food fluctuations of 12 h to 5 days induce synchronous egg production fluctuations; beyond 5 days the strong physiological changes induced by long starvation durations create delays in the responses to food replenishment. The available data of cultivated cohorts under laboratory conditions are used to validate the model. The properties underlined by the model, in particular its weak capacity to respond to starvation, allow explaining A. grani distribution in specific habitats. Different experimental protocols for complementary experiments are proposed to complete the model validation in other forcing conditions.  相似文献   

18.
The toxicity of copper and zinc to the estuarine copepod Acartia tonsa and to the two diatom food species Thalassiosira pseudonana and T. weissflogii was measured in nitrilotriacetate-trace metal ion buffer systems at 25 S. Overall, A. tonsa appeared to be more sensitive to cupric and zinc ion activity than either of the diatoms; however, its sensitivity varied among the different life stages examined. Adult survival was not affected within the zinc ion activity range 10-11 to 10-8 M and cupric ion activity range 10-13 to 10-11 M over a 96-h period, but a cupric ion activity of 10-10 M caused total mortality of adults within 72 h. Egg-laying rate was most sensitive to zinc, and was reduced at zinc ion activities 10-10 M. Naupliar survival after 96 h was reduced by zinc ion activities 10-8 M and by cupric ion activities 10-11 M, and was reduced to zero at a zinc ion activity of 10-7 M and at a cupric ion activity of 10-10.5 M. In an interspecies comparison of 96-h adult survival, Centropages typicus was more sensitive to copper and zinc than A. tonsa and the survival of Labidocera aestiva was dependent on the ratio of cupric to zinc ion activity. A comparison of our results with estimates of zinc and cupric ion activities in estuaries suggests that ionic activities of these metals are high enough in some polluted estuaries to affect the survival and reproduction of copepods.  相似文献   

19.
The effect of various bacteria on the growth of and hemolysin production by Amphidinium carterae was studied. The algal culture had an indigenous bacterial flora of Moraxella and Pseudomonas and these could not be eliminated by treatment with bactericidal antibiotics like gentamicin. Various bacteria like Micrococcus, Aeromonas, Vibrio, and Moraxella-like bacteria were added to A. carterae cultures to study their effect on growth and hemolysin production. Micrococcus and Aeromonas were found to improve the growth marginally. Hemolysin titres were considerably higher in A. carterae cultures supplemented with bacteria. Received: 27 May 1997 / Accepted: 22 July 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号