首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic pollutants, especially polychlorinated hydrocarbons, phenols, guaiacols and catechols have been studied by analyses of snow samples from North Pole, May 1984. All of these pollutants were below the limit of determination which was estimated to be as fallout 0.1–0.05 μg/m2 for individual compounds. For comparison, snow samples from Central Finland and South Finland 1983–1985 also showed non-detectable levels of chlorinated hydrocarbons but well measurable levels of chlorophenol compounds which were significantly higher at urban (heavy traffic) than rural and higher at South than Central Finnish places, respectively. One sample from Lapland, North Finland 1985, however, had no measurable amounts of chlorophenols like the North Pole sample.  相似文献   

2.
A first time investigation was performed to establish a chemical baseline for snowfall at Palmer Station Antarctica (64°46′S, 64°05′W) since there was no such record. A chemical baseline for snow could be use to validate climate change studies based on ice core analyses. The snow samples contained (from high to low mass concentration) total organic carbon, chloride, inorganic carbon, sodium, sulfate, magnesium, calcium, potassium, fluoride, ammonium, and nitrate, excluding hydrogen and hydroxide. The pH of these samples ranged between 4.0–6.2. The relatively low nitrate and relatively high sulfate concentrations found in our samples are consistent with the results of other studies for this region of Antarctica. The ions and pH do not appear to favor a particular wind direction during this period. The total deposition of sulfate and flouride via snowfall between 10 January and 10 February is conservatively estimated to be 4.78 and 1.3 kg km-2, respectively.  相似文献   

3.
Snow samples were collected near crossroads in Novi Sad, Serbia, during December 2009 to assess metal concentrations (Ca, K, Zn, Fe, Cu, Mn, Al, Pb and Na), fine particle distribution and pH value. The filtered samples of melted snow were analysed, with a focus on particles smaller than a few μm. The most common values of the frequency number distribution curve were either in the range of 0.05-0.07 μm or one order of magnitude higher (0.2-0.5 μm). At examined locations metal concentrations varied from 0.0004 mg L−1 for Pb to 18.9 mg L−1 for Na. Besides Na, which mostly originated from de-icing salt, Ca is found to be the most abundant element in snow indicating the dominant influence of natural factors on snow chemistry. No significant difference was found in concentration of the elements at locations near crossroads with either low or high traffic volume, except for Na and Zn.To investigate how metals were related a correlation analysis was done for the concentrations of metals and with respect to the particle size distribution parameters and pH values. The major influence on the fine particle volume (mass) was concluded to be due to the elements from anthropogenic sources. This conclusion was based on the significant positive correlation between Fe, Zn and Al and the fine particle volume based distribution parameters.  相似文献   

4.
During January and February 1984, a field project was conducted near North Bay, Ontario, Canada. The principal objective was to characterize the chemical and microphysical properties of the air masses, clouds and precipitation in this region of NE North America during the winter season. Two extensively instrumented aircraft with some newly designed cloudwater and snow collectors were used, as well as a surface station continuously monitoring pollutant concentrations and a precipitation event sampling network. Pollutant concentrations at the surface were found to vary with the airmass back trajectory with the highest concentrations observed for trajectories from the S and SW and the lowest from the N. Vertical profiles of aerosol particle (0.2−2 μm diameter) and NOx concentrations show similar trends with maxima of 1200 cm−3 and 7 ppb, respectively near ground level with air mass trajectories from the S, in comparison to values of 250 cm−3 and 1 ppb obtained with trajectories from the N. Cloudwater, aircraft precipitation and ground precipitation samples had a daily median pH of 3.6,4.6 and 4.2, respectively with the cloudwater having the highest sulphate and nitrate concentrations. The nitrate/sulphate equivalent concentration ratios in the cloudwater, aircraft precipitation and ground precipitation samples were 0.7,0.6 and 1.4, respectively. The data suggest that precipitation scavenging of nitric acid below cloud base is an important process during the winter season.  相似文献   

5.
Zuo Y  Zhang K  Wu J  Men B  He M 《Chemosphere》2011,83(7):1014-1019
Phthalic acid and its photochemical degradation has been determined in snow and rainwater samples collected during winters (2003-2010) in the Southeast of Massachusetts using capillary gas chromatography (GC) with flame ionization and mass spectrometric detection. Water samples were dried using a rotary evaporator and derivatized with a 14% BF3/methanol reagent before GC analysis. The developed method proved simple and accurate. Phthalic acid was found in snow samples collected in a concentration range of 7.22-76.5 nM. The photodegradation of phthalate was carried out under 300 nm UV light. The direct photodecomposition of the acid is slow (5% h−1). However, the addition of dissolved Fe(III) species at 2.0 μM accelerated the light-induced degradation of phthalic acid by 3.5 times in the atmospheric water samples. Photodegradation rates of phthalic acid increases with decreasing pH value of water samples in the range of pH 2.8-4.5.  相似文献   

6.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

7.
Semifluorinated n-alkanes (SFAs) with carbon chain lengths of 22 to approximately 36 atoms are present in fluorinated ski waxes to reduce the friction between ski base and snow, resulting in a better glide. Semifluorinated n-alkenes (SFAenes) are byproducts in the production process of SFAs and are also found in ski waxes. Snow and soil samples from a ski area in Sweden were taken after a large skiing competition and after snowmelt, respectively, and analyzed for SFAs and SFAenes. Single analyte concentrations in snow (analyzed as melt water) ranged from a few ng L−1 up to 300 μg L−1. ∑SFA concentrations decreased significantly from the start to the finish of the ski trail. Single analyte concentrations in soil ranged up to 9 ng g−1 dw. ∑SFA concentrations in soil did not show a trend along the ski trail. This may be due to the fact that concentrations in soil, although strongly influenced by the competition, reflect inputs during the whole skiing season. The chemical inventory in snow was greater than the inventory in soil for shorter chain SFAs (C22C28) and for all SFAenes. Additionally, a significant change in SFA patterns between snow and soil samples was found. These observations suggested volatilization of shorter chain SFAs and of SFAenes during snowmelt. Evidence for long-term accumulation of SFAs in surface soil over several skiing seasons was not found.  相似文献   

8.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

9.
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3 were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops.  相似文献   

10.
A short-term study on organic acids in precipitation was conducted from 15 March to 1 June 1984 at two sites on the Wisconsin Acid Deposition Monitoring Network. Aliquots of collected samples were fixed with tetrachloromercurate (TCM) and analyzed for low molecular weight organic anions via ion-exclusion chromatography (ICE). Unfixed aliquots were subjected to standard network inorganic analyses. Of the 31 samples collected, 30 contained detectable concentrations of formate and acetate ions, with concentrations ranging from < 0.43 to 56μmol−1 for the former and < 0.83 to 33 μmol ℓ−1 for the latter. Propionate, oxalate and malonate ions were also detected in a number of samples. Statistical analysis of the combined organic and inorganic data set indicated that no significant differences existed between the concentrations of organic ions at the two sites; however, samples containing visible sediments had significantly greater concentrations than samples without sediments. Maximum contributions of the organic acids to precipitation-free acidity, calculated by assuming that the only sources of the measured formate and acetate were their respective acid forms, averaged 18.6% for samples with a pH ⩽ 5.0. Formate and acetate concentrations were highly correlated. Correlations between organic and inorganic ions were weak; NH+4 and Ca2+ generally exhibited the highest, though still weak, correlations. The study emphasizes the need for further, longer-term investigations to determine the role of low molecular weight organic compounds in precipitation chemistry.  相似文献   

11.
Airborne particles of diameter > 0.4 μm reaching Dye 3, Greenland during April–May 1983 were highly variable in size and concentration from day to day. Five-day backward air mass trajectories suggest the importance of long-range transport from more northerly latitudes on days with high concentrations; particle sizes were larger on these days. Lower concentrations and smaller particle sizes were associated with transport from the south. It is inferred that Dye 3 may receive material emitted from Eurasian sources and transported over the Pole, similar to inferences for more northern Arctic sites.Elemental analysis of individual particles showed an abundance of crustal material, with many particles also containing sulfur. Bulk chemical analyses of airborne particles and fresh snow, collected during three snowstorms where ice nucleation dominated, provided data which were used to estimate mass-basis scavenging ratios. Average scavenging ratios were in the range ~1000–2000 for the crustal elements Al, Fe, K, Mg, Mn, and Na. Similar values were observed for Cd, Cu and NO3. The corresponding ratios for Pb and SO42− averaged less than 200. These ratios were used with precipitation rate data to estimate wet deposition velocities in the order of ~2 cm s−1 for the first nine species, and ~0.2 cm s−1 for Pb and SO42−. Comparing fresh and older surface snow concentrations gave an average dry deposition velocity of roughly 0.2 cm s−1 for the crustal elements, with the small fraction of large particles (~5–10 μm) dominating deposition; much smaller values were associated with the remaining species. When used with other data in the literature, the results of this study suggest that total deposition velocities of Pb and SO42− may be as small as 0.05 cm s−1 in relatively dry regions of the Arctic.  相似文献   

12.
Chemical composition of precipitation was measured with wet-only samplers at a rural site at Bhubaneswar in eastern India during 1997–1998. All rain events were compared with trajectories and precipitation fields from the ECMWF. The pH and ionic concentrations were found to vary systematically with the origin of air and the amount of rainfall along the trajectory. A seasonal cycle for pH was found with a monthly median pH below 5.0 during October–December. The highest monthly median concentration of Ca2+ was found in May with 20 μmol l−1 and for SO42− in January with 52 μmol l−1. Samples with trajectories within 400 km from Bhubaneswar during the last 5 days were found to have a median pH slightly below 5.0 as an average. These samples also had the highest concentration for all measured ions, indicating large pollution sources within the region. Samples with continental origin showed a decrease of ∼70% in concentration if there had been rain during >50% of the last 5 days compared to rain during <50% of the last 5 days. High concentrations of Na+ and Cl were also found in continental samples. Resuspension of previously deposited sea salt is believed to be the reason. The data were compared with data from three other sites in western India and higher concentrations of almost all ions (NH4+ being the exception) compared to Bhubaneswar were found at the west coast in monsoon samples.  相似文献   

13.
During the 1999 summer field season at Summit, Greenland, we conducted several series of experiments to follow up on our 1998 discovery that NOx is released from the sunlit snowpack. The 1999 experiments included measurements of HONO in addition to NO and NO2, and were designed to confirm, for Greenland snow, that the processes producing reactive nitrogen oxides in the snow are largely photochemical. Long duration experiments (up to 48 h) in a flow-through chamber and in the natural snowpack revealed sun-synchronous diurnal variations of all three reactive nitrogen oxides. In a second set of experiments we alternately shaded or exposed snow (again in the natural snowpack and in the chamber) to ambient sunlight for short periods to reduce any temperature changes during variations in light intensity. All three N oxides increased (decreased) very rapidly when sunlit (shaded). In all experiments NO2 was approximately 3-fold more abundant than NO and HONO (which were at similar levels). Higher concentrations of NO3 in the snow resulted in higher mixing ratios of HONO, NO and NO2 in the snow pore air, consistent with our hypothesis that photolysis of NO3 is the source of the reactive N oxides.  相似文献   

14.
Abstract

Crude enzyme from a soil fungus, Aspergillus flavus, was isolated from a field soil following repeated applications of metolachlor [2-Chloro-N-(methoxy-1-methylethyl)-2′-ethyl-6′-methyl acetanilide]. Metolachlor hydrolysis by the crude enzyme extract was determined by enzyme assay. The tests were performed in phosphate buffer, pH 7.5, and the reaction was carried out at two herbicide concentrations (20 and 100 μg mL?1) and two crude extract volumes (0.2 and 0.5 mL of the homogenized crude extract mixture). The rate of metolachlor degradation was found faster in samples containing higher volume of crude extract, (T 1/2, 5.7 h) for both concentrations of the herbicide. The activities of enzymes responsible for dechlorination coupled with hydroxylation, N-dealkylation, and breaking of amide linkage were found responsible in the degradation.  相似文献   

15.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

16.
From 1990 to 1994 at Alert, Nunavut, Canada, weekly snow samples were collected under low wind conditions to avoid contamination by blowing snow. They were analysed for major ions, Br, and the organic ions methylsulphonate, formate, acetate and propionate. In the Arctic, where annual precipitation is low and blowing snow is common, these observations are unique. On an equivalent weight basis, acids and sea salt in snowfall are mixed approximately equally from December to January but from March to May acids dominate. The acidity of snowfall increases progressively throughout the winter to a May peak of ∼16 μeq l−1. SO42−, Br, and the organic acids acetate, and propionate peak in snowfall after polar sunrise indicate the influence of enhanced photochemical reactions. The greater enrichment of halides relative to sea salt Na+ in snow compared to aerosols indicates that gaseous uptake by snowflakes is important in the removal of these substances from the atmosphere and their deposition on to the Earth's surface. There is a marked difference between the seasonal variation of enrichment of Cl and Br in snow. The latter show a marked increase after polar sunrise while the former does not. These results provide valuable baseline information on the ionic content of fresh snowfall to be used in understanding the results of snowpack chemistry and post-depositional process studies conducted in the high Arctic.  相似文献   

17.
Chemical composition of rainwater was studied in the northeastern Romania, Iasi region, and the concentrations of major inorganic and organic ions were measured in samples collected between April 2003 and December 2006. The pH of the rainwater is 5.92 (volume weighted mean average, VWM) suggesting a sufficient load of alkaline components neutralizing its acidity. On average, 97% of the acidity in the collected samples is neutralized by CaCO3 and NH3. Clear seasonal variations were observed for some of the identified ions (e.g., SO42−, NO3, Ca2+, NH4+). The data obtained during this work revealed that both concentrations and fluxes of anthropogenic source-related ions (e.g., SO42−, NO3 and NH4+) are among the highest reported for European sites. It is shown that meteorology and long-range transport processes may concur to their high levels.  相似文献   

18.
Measurements of airborne (gaseous and aerosol), cloud water, and precipitation concentrations of nitrogen compounds were made at Mt. Mitchell State Park (Mt. Gibbs, ~2006 m MSL), North Carolina, during May through September of 1988 and 1989, An annular denuder system was used to ascertain gaseous (nitric acid, nitrous acid, and ammonia) and particulate (nitrate and ammonium) nitrogen species, and a chemiluminescence nitrogen oxides analyzer was used to measure nitric oxide and nitrogen dioxide. Measurements of NO3 ? and NH4 + ions in cloud and rain water samples were made during the same time period. Mean concentrations of gaseous nitric acid, nitrous acid, and ammonia were 1.14 μg/m3, 0.3 μg/m3, and 0.62 μg/m3 for 1988, and 1.40 μg/m3,0.3 μg/m3, and 1.47 μg/m3 for 1989, respectively. Fine particulate nitrate and ammonium ranged from 0.02 to 0.21 μg/m3 and 0.01 to 4.72 μg/m3 for 1988, and 0.1 to 0.78 μg/m3 and 0.24 to 2.32 μg/m3 for 1989, respectively. The fine aerosol fraction was dominated by ammonium sulfate particles. Mean concentrations of nitrate and ammonium ions in cloud water samples were 238 and 214 μmol/l in 1988, and 135 and 147 μmol/l in 1989, respectively. Similarly, the concentrations of NO3 and NH4 + in precipitation were 26.4 and 14.0 μmol/l in 1988, and 16.6 and 15.2 μmol/l in 1989, respectively. The mean total nitrogen deposition due to wet, dry, and cloud deposition processes was estimated as ~30 and ~40 kg N/ha/year (i.e., ~10 and ~13 kg N/ha/growing season) for 1988 and 1989. Based on an analytical analysis, deposition to the forest canopy due to cloud interception, precipitation, and dry deposition processes was found to contribute ~60, ~20, and ~20 percent, respectively, of the total nitrogen deposition.  相似文献   

19.
ABSTRACT

Methylcyclopentadienyl manganese tricarbonyl (MMT) has been used in Canada since 1976 as an antiknock agent in gasoline, completely replacing Pb in 1990. An early study of much higher Mn concentrations in gasoline showed that the combustion of MMT leads to the formation of inorganic manganese oxides, especially Mn3O4. Recent emission testing by Lawrence Livermore National Laboratory for Ethyl Corp. has shown that Mn is primarily emitted as a phosphate or sulfate along with minor amounts of oxides. The main objective of this research was to analyze the deposition of Mn from MMT to the terrestrial environment beside the major highways in the greater Toronto area (GTA), Canada. The results were compared with Pb and other trace elements such as Al, Ca, Fe, Mg, Cu, Zn, Na, and the Cl- ion (water extractable) to study the behavior of Mn in soil. The study area was located near major Toronto highways 401 (urban) and 400 (rural), at 43° 67′ N and 79° 37′ W (latitude and longitude) (278,560 and 47,835 cars/day), respectively. Surface soil samples (0–5 cm depth) were collected at distances up to 40 m from the roadside. Parameters evaluated included total and available Mn and other trace elements, particle size, pH, organic content, and cation exchange capacity.  相似文献   

20.
A measurement technique was developed to reliably quantify organic nitrogen (ON) in ambient, wet-only precipitation. Samples were frozen during collection and subsequently divided into two aliquots. One set was stored at −170°C and analyzed for total N (TN) via high-temperature combustion to NO and detection by chemiluminescence; the other set was sterilized with CHCl3, stored refrigerated, and analyzed for NH4+ by automated colorimetry and for NO3, and NO2 by ion chromatography. ON was inferred by difference. Analysis of paired, untreated aliquots stored for 30 and 41 days at different temperatures revealed substantial conversion of NH4+ to ON at room temperature and significant losses (16% and 23%) of NH4+ (presumably to biota growing on bottle walls) in refrigerated samples. Analytes in frozen and sterilized samples were stable. Volume-weighted ON concentrations for precipitation sampled at Charlottesville, Virginia (VA), Newark, Delaware (DE), and New Castle, New Hampshire (NH; 3.1, 4.2, and 0.6 μM N, respectively) and corresponding contributions to volume-weighted TN (6.5%, 7.8%, and 2.6%, respectively) are at the lower limit of published values for eastern North America and elsewhere. Methodological differences contribute to the apparent variability among these reported sample statistics. Volume-weighted ON concentrations were generally highest during spring and were lowest during summer. Due to the combined influence of unmeasured ON and loss of NH4+ from inadequately preserved samples, current estimates for the wet deposition of atmospheric N to eastern North America based on data from national networks may be underestimated by 10–20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号