首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Coastal rivers contributed the majority of anthropogenic nitrogen (N) loads to coastal waters, often resulting in eutrophication and hypoxia zones. Accurate N source identification is critical for optimizing coastal river N pollution control strategies. Based on a 2-year seasonal record of dual stable isotopes (\({\updelta}^{15}\mathrm{N}-{\mathrm{NO}}_3^{\hbox{-} }\) and \({\updelta}^{18}\mathrm{O}-{\mathrm{NO}}_3^{\hbox{-} }\)) and water quality parameters, this study combined the dual stable isotope-based MixSIAR model and the absolute principal component score-multiple linear regression (APCS-MLR) model to elucidate N dynamics and sources in two coastal rivers of Hangzhou Bay. Water quality/trophic level indices indicated light-to-moderate eutrophication status for the studied rivers. Spatio-temporal variability of water quality was associated with seasonal agricultural, aquaculture, and domestic activities, as well as the seasonal precipitation pattern. The APCS-MLR model identified soil + domestic wastewater (69.5%) and aquaculture tailwater (22.2%) as the major nitrogen pollution sources. The dual stable isotope-based MixSIAR model identified soil N, aquaculture tailwater, domestic wastewater, and atmospheric deposition N contributions of 35.3 ±21.1%, 29.7 ±17.2%, 27.9 ±14.5%, and 7.2 ±11.4% to riverine \({\mathrm{NO}}_3^{\hbox{-} }\) in the Cao’e River (CER) and 34.4 ±21.3%, 29.5 ±17.2%, 27.4 ±14.7%, and 8.7 ±12.8% in the Jiantang River (JTR), respectively. The APCS-MLR model and the dual stable isotope-based MixSIAR model showed consistent results for riverine N source identification. Combining these two methods for riverine N source identifications effectively distinguished the mix-source components from the APCS-MLR method and alleviated the high cost of stable isotope analysis, thereby providing reliable N source apportionment results with low requirements for water quality sampling and isotope analysis costs. This study highlights the importance of soil N management and aquaculture tailwater treatment in coastal river N pollution control.

  相似文献   

2.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   

3.
Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k 2?=?2.04?×?10?2?g?min?1?μg?1) and greater adsorption capacity (q e?=?38.8 μg?g?1) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg2+ which significantly reduced adsorption distribution coefficient (K d) from 12,990?±?260 to 4,690?±?180 L?kg?1. Species-specific adsorption distribution coefficients followed the order of $ K_{\mathrm{d}}^{{ + 00}} \gg K_{\mathrm{d}}^{{ + - 0}} > K_{\mathrm{d}}^{{ + - - }} $ . Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 °C) followed the Freundlich adsorption isotherm well.  相似文献   

4.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH?=?8.2), moderate organic content (DOC?=?152 mg C L?1, COD?=?684 mg O2 L?1) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe2+ L?1, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUV L?1, respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L?1 (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L?1, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization $ \left({t}_{30\mathrm{W}}=3.2\ \min; \overline{T}=30.7\ {}^{\circ}\mathrm{C};\overline{\mathrm{pH}}=2.80;{\overline{\mathrm{UV}}}_{G,n}={13\ \mathrm{W}\ \mathrm{m}}^{-2}\right). $   相似文献   

5.
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO \(_{3}^{-}\) (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO \(_{3}^{-}\) does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.  相似文献   

6.

Purpose  

Increases in dissolved organic carbon (DOC) concentrations have been reported in surface waters worldwide in the last 10 to 20 years. The causes behind these increases have been attributed to many factors, including climate change and decreasing depositions of atmospheric sulphate ( \textSO42 - {\text{SO}}_4^{{{2} - }} ). Trends in DOC concentrations and their potential causal factors were examined in a network of 30 lakes lying in undisturbed temperate and boreal catchments in the province of Quebec, Canada.  相似文献   

7.
In order to determine human exposure to the indoor toxicant, selection of dust fraction and understanding dust particle size distribution in settled indoor dust are very important. This study examined the influence of dust particle size on the concentration of polybrominated diphenyl ethers (PBDEs) congeners, assessed the distribution of dust particle size and characterized the main indoor emission sources of PBDEs. Accordingly, the concentrations of PBDE congeners determined in different indoor dust fractions were found to be relatively higher in the order of dust particle size: 45–106 μm?>?(<45 μm)?>?106–150 μm. The finding shows arbitrary selection of dust fractions for exposure determination may result in wrong conclusions. Statistically significant moderate correlation between the concentration of Σ9PBDEs and organic matter content calculated with respect to the total dust mass was also observed (r?=?0.55, p?=?0.001). On average, of total dust particle size <250 μm, 93.4 % (m/m%) of dust fractions was associated with less than 150 μm. Furthermore, of skin adherent dust fractions considered (<150 μm), 86 % (v/v%) is in the range of particle size 9.25–104.7 μm. Electronic materials treated with PBDEs were found the main emission sources of PBDE congeners in indoor environment. Based on concentrations of PBDEs determined and mass of indoor dust observed, 150 μm metallic sieve is adequate for human exposure risk assessment. However, research in this area is very limited and more research is required to generalize the fact.  相似文献   

8.
9.
Kefeni KK  Okonkwo JO 《Chemosphere》2012,87(9):1070-1075
The study focused on analysis of polybromobiphenyls (PBBs) and polybromodiphenyl ethers (PBDEs) congeners in office dust obtained in Pretoria, South Africa. Of the 32 congeners considered for identification, (BB-1, 2, 4, 10, 15, 26, 29, 30, 31, 38, 49, 80, 103, 153, 155, 209 and BDE-3, 15, 17, 28, 47, 66, 77, 85, 99, 100, 126, 138, 153, 154, 183, 209) only BB-2, 4, 30, 153, 209 and BDE-47, 66, 85, 99, 153 and 209 congeners were detected. The sum of PBBs concentration detected in office dust ranged from <dl − 196 ng g−1 dry weight (dw) with a median and mean of 11.4 and 38.2 ng g−1, respectively. On the other hand, the sum of PBDEs concentration detected ranged from 21.6 to 578.6 ng g−1 dw with a median and mean of 162 and 169 ng g−1 dw, respectively. A Spearman rank correlation between ∑5PBBs and ∑6PBDEs (rs = 0.55, p = 0.003), indicated a statistical significant positive correlation for the similarity of pollution sources for both compound classes. However, no correlation was observed between the number of electronic materials and summation of concentrations of PBBs and PBDEs congeners detected. Concentrations of PBDEs detected in this study are substantially lower than reported in office dust in developed countries.  相似文献   

10.
Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m\(^{-2}\mathrm{{day}}^{-1}\) and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.  相似文献   

11.
This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM2.5 (Particulate Matter up to 2.5 μm in size) bounded Σ15PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM10 (Particulate Matter up to 10 μm in size) bounded Σ15PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ15PBDEs via dust inhalation and ingestion for adults reached ∼141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones.  相似文献   

12.
13.
Harrad S  Abdallah MA 《Chemosphere》2011,82(9):1240-1245
Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and tetrabromobiphenol-A (TBBP-A) were measured in a preliminary study of dust from passenger cabins and trunks of 14 UK cars. Concentrations in cabin dust of HBCDs, TBBP-A, and BDEs 47, 85, 99, 100, 153, 154, 183, 196, 197, 202, 203, 206, 207, 208, and 209 exceeded significantly (p < 0.05) those in trunk dust. Sampling cabin dust thus appears to provide a more accurate indicator of human exposure via car dust ingestion than trunk dust. Elevated cabin concentrations are consistent with greater in-cabin use of BFRs. In five cars, while no significant differences (p > 0.05) in concentrations of HBCDs and most PBDEs were detected in dust sampled from four different seating areas; concentrations of TBBP-A and of PBDEs 154, 206, 207, 208, and 209 were significantly higher (p < 0.05) in dust sampled in the front seats. Possible photodebromination of BDE-209 was indicated by significantly higher (p < 0.05) concentrations of BDE-202 in cabin dust. In-vehicle exposure via dust ingestion to PBDEs, HBCDs and TBBP-A exceeded that via inhalation. Comparison with overall exposure via diet, dust ingestion, and inhalation shows while in-vehicle exposure is a minor contributor to overall exposure to BDE-99, ΣHBCDs, and TBBP-A, it is a significant pathway for BDE-209.  相似文献   

14.
Ali N  Harrad S  Goosey E  Neels H  Covaci A 《Chemosphere》2011,83(10):1360-1365
Concentrations of several “novel” brominated flame retardants (NBFRs) are reported in indoor dust samples from Belgian houses (n = 39) and offices (n = 6) and from day-care centers and schools in the West Midlands of the UK (n = 36). Using a GC-ECNI/MS method, the following NBFRs were quantified: decabromodiphenyl ethane (DBDPE) (range <20-2470 ng g−1), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) (range <0.5-1740 ng g−1), tetrabromobisphenol A-bis(2,3-dibromopropylether) (TBBPA-DBPE) (range <20-9960 ng g−1), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) (range <2-436 ng g−1) and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) (range <2-6175 ng g−1). Hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO), another NBFR, was below the detection limit of 2 ng g−1 dust in all dust samples. No correlation was detected between concentrations of NBFRs and PBDEs. The ratio of TBB:TBPH in the dust samples ranged from 0.01 to 4.77 (average 0.42), compared to the ratio present in the commercial flame retardant product FM 550 (TBB:TBPH = 4:1). Furthermore, no correlation was detected between concentrations in dust of TBB and TBPH. This may suggest different sources of these NBFRs, or similar sources but compound-specific differences in their indoor fate and transport. Exposure via dust ingestion was estimated for both adults and toddlers under low-end (5th percentile), typical (median), and high-end (95th percentile concentrations) scenarios. These were calculated assuming 100% absorption of intake dust and using mean dust ingestion (adults = 20 mg d−1; for toddlers = 50 mg d−1) and high dust ingestion (adults = 50 mg d−1; for toddlers = 200 mg d−1). Typical exposure with high dust ingestion estimates for adults were 0.01, 0.2, 0.01, 0.02 and 0.08 ng kg−1 bw d−1 and for toddlers 0.05, 1.9, 0.08, 0.4 and 1.12 ng kg−1 bw d−1 for BTBPE, DBDPE, TBB, TBPH and TBBPA-DBPE, respectively. Our results showed that, similar to PBDEs, toddlers have higher exposure to NBFRs than adults. This study documents the presence of NBFRs in indoor environments, and emphasizes the need to evaluate the health implications of exposure to such chemicals.  相似文献   

15.
16.
The concentration and the composition of dust in the indoor environment has been associated with reported symptoms of the sick building syndrome. Levels of airborne concentrations of dust particles are well known. However, the relation to dust on surfaces for office environments are not well described. In this study, 662 measurements were performed of surface dust concentrations on hard surfaces in 19 buildings within Harvard University based on a sticking gelatine foil method. The measure is the dust covered area of the surface as a percentage. In three offices, the build-up of dust on surfaces was measured for a period of five days. Close to these surfaces the airborne PM2.5 and PM10 particle mass concentrations were measured simultanously. A significant correlation between the dust build-up and the difference between the PM10 and the PM2.5 was established. The particle size distribution was measured by means of an Aerodynamic Particle Sizer. The mean dust build-up normalized with the measured PM10 was approximately four times higher than the equivalent calculated by a deposition model. This may in part be due to the effect of preferred orientation when particles settle to a surface. Different data for dust on surfaces and airborne particles in offices were compared. The levels of airborne particles in offices in Europe seem to be higher than the levels in the US.  相似文献   

17.
Airborne polybrominated diphenyl ethers (PBDEs) were measured in workplaces, homes and urban outdoor air in Greece. The geometric mean concentrations of total PBDEs (sum of 19 congeners) in offices (205pgm(-3)), internet cafes/computer rooms (127pgm(-3)) and computers/electronics shops (85pgm(-3)) were significantly higher than those in furniture stores (12pgm(-3)), homes (8pgm(-3)) and outdoor air (18pgm(-3)). The daily inhalation intake of PBDEs estimated for the employees of the four occupational settings ranged from 0.2 to 1.4ngday(-1) and it was significantly lower than the expected dietary intake ( approximately 77ngday(-1)). Although inhalation generally represented a small fraction of the overall daily exposure to PBDEs ( approximately 1%), the results from a heavily contaminated office (10 848pgm(-3) of total PBDEs) indicated that the intake from this route (65ngday(-1)) may, in some extreme cases, be as important as diet.  相似文献   

18.
19.
Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients (Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound’s octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions (R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.  相似文献   

20.
Polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants in consumer products. PBDEs rapidly bioaccumulate in the environment, food, wild animals and humans. In this review, we investigated the harmful effects of PBDEs on humans, especially in early life, and summarised the levels of PBDEs in human biological samples (breast milk, cord blood and placentas). In addition, we described the spatiotemporal distribution of PBDEs in this review. PBDE levels in breast milk, cord blood and placentas were generally higher in North America than in other regions, such as Asia, Europe, Oceania and Africa. However, high levels of PBDEs in human biological samples were detected at e-waste recycling sites in South China, East China and South Korea. This finding suggests that newborns living in e-waste regions are exposed to high levels of PBDEs during prenatal and postnatal periods. The time trends of PBDE concentration differed according to the region. Few studies have investigated PBDE levels in humans from 1967 to 2000, but they increased rapidly after 2000. PBDE concentration peaked at approximately 2006 globally. Compared with other PBDE congeners, BDE-47, BDE-153 and BDE-209 were the major components, but the detection rate of BDE-209 was lower than those of others. Future studies should focus on determining the BDE-209 concentration, which requires the implementation of different analytical approaches. Additionally, the levels of PBDEs in human samples and the environment should be monitored, especially in e-waste recycling regions.
Graphical abstract The figures described the spatial distribution of the lowest (Fig. a1) and highest concentration of ∑PBDE (Fig. a2) in different countries by 2006 and described the spatial distribution of the lowest (Fig. b1) and highest concentration of ∑PBDE (Fig. b2) in different countries from 2007 to 2015. All the figures indicated that the levels of PBDEs in North America were substantially higher than those in many regions of Europe, Asia, Oceania, or Africa. Comparing Fig. a1–b1 or Fig. a2–b2, increasing trends were observed in some countries, especially in some regions in China, Korea and Canada.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号